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Uvod
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Umeéla
inteligence

Umélé neuronové sité

Expertni systémy Evolu¢ni (NS)
(ES)  Fuzzy systémyalgoritmy Nizka uroven
(FS) (EA) modelovani

Vysoka uroven
modelovani
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Mozek

Parametry mozku

Vaha: 1200-1400 g

Objem: 140 x 160 x 90 mm

Plocha: 2200 - 2400 cm?

Seda kiira (cortex): tloudtka 1 - 4,5 mm

Hmotnosti mozku rtiznych zvirat
velryba 7800 g
slon 6000 g
delfin 1500 g
gorila 540 ¢g
krdava 460 g
ovce 140¢g
pes 72 g
kocka 30 g
potkan 2 g
jeStérka 0,08 g
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Mozek - funkce

target afllon  dependence
conte:
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Mozek — néktera historicka fakta

335 let pf.n.l. Aristoteles pamét, sny a pod.

400 let pi.n.l. Platon v mozku vééna duse

130n.l. R.C. Galenus nervy jako trubicky

1660 I. Newton Sifeni vibraci

1771 L. Galvani elektricky potencial

19. stoleti intensivni vyzkum

1835 J. E. Purkyné identifikace neuronu
neuronova sit’

1864 P. Brocca lokalizace centra reci
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Biologicky neuron

Soma télo neuronu
rozmér um az 10 um

Bunkova membréana

Cytoplazma .

Jadro bunky 4 Dentrit vstup do neuronu
}T“‘“"“ ' —— délka 3 mm

Axén p

Telo bunky (soma) Axon vystup z neuronu

Senary délka aZ v metrech

Synapse kontakt mezi neurony

V mozku (v cortexu) je odhadem 10 miliard neuron( uloZzenych zhruba v 6
vrstvach. Hustota je (7 — 8).10* neuront na 1 mm3. Kazdy neuron muize mit s
jinym neuronem 10 az 100 tisic propojeni. Celkovy pocet propojeni je cca
60000 miliard.
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Biologicka neuronova sit

Propojeni jednotlivych neurond, synapse
urcuji propustnost (vahu) daného spojeni
/

Axo-somaticka Y N\
synapsa

Axo-dendriticka
synapsa
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Uméla neuronova sit

MOZEK
Hardware lidského byti
Zakladni procesor biologického systému

Matematicky popis

- ad

Biologicka neuronova sit

Uméla neuronova sit




FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Uméla neuronova sit

Vstupy Vstupy

Vystupy
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Pouziti umelé neuronové site

ASSIGNMENT

%ﬁ

Predikce

Univerzalni aproximace
Rozpoznavani vzorl
Rozhodovani
Zpracovani signald
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Co je Al?

Al (Artificial Intelligence)

Schopnost strojil napodobovat kognitivni funkce, jako je uéeni a rozhodovani.
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Co je Al?

Strojové uceni

(Machine Learning)

Podskupina Al zaméfrena na trénovani algoritmU na datech.
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Co je Al?

Hluboké uceni

(Deep Learning)

Pokrocila forma strojového uceni, vyuZzivajici neuronové sité.
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\'yvoj, pokroky a ,,doby ledove”

e 1950s — Pocatky Al
* Alan Turing predstavuje sv(j test jako zpUsob méreni inteligence strojd.
* Prvni pokusy o programy simulujici Sachovou hru nebo logiku.




\lyvoj, pokroky a , doby ledove”

e 1956 — Dartmouthska konference

* Al se rodi jako obor: Prvni zminka o pojmu , Artificial Intelligence”.
* Optimismus: Predstava, Ze stroje budou brzy myslet jako lidé.
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\'yvoj, pokroky a ,,doby ledove”

e 1970s — Prvni Al ZIMA (Al Winter)

* Nedostatek vypocetniho vykonu a neuspéchy v aplikacich.




\'yvoj, pokroky a ,,doby ledove”

e 1980s — Renesance Al diky expertnim systémim
* Vyvoj expertnich systému (napr. MYCIN v mediciné).
e Komercni uspéchy vedly ke zvySeni financovani.

* Neuronové sité se objevuiji jako potenC|aIn| reseni.

'J 1 ne 1yous Al

Renassance &N E\(PERT \Yf‘
| Expert Sysrqteurg' : 2




\'yvoj, pokroky a ,,doby ledove”

e 1990s — Druha Al ZIMA (Al Winter 2)
* Ddvod: Expertni systémy byly drahé a rigidni.

* Nadseni z Al znovu upada.




\'yvoj, pokroky a ,,doby ledove”

e 2000s — Navrat diky velkym datim
* Hluboké uceni (Deep Learning) zacina prinaset skute¢né vysledky.
* Vyuziti masivniho vypocetniho vykonu (GPU).
* Prvni velké Uspéchy ve strojovém vidéni a rozpoznavani hlasu.

* 2010s — Zlaty vék Al
* Al porazi lidské Sampiony v hrach (Sachy, Go — AlphaGo od DeepMind).
» Rozmach personalizovanych sluzeb a aplikaci (Google Assistant, Netflix).
* Hluboké neuronové sité dominuji v pfirozeném jazyce (GPT, BERT).




\'yvoj, pokroky a ,,doby ledove”

e 2020s — Soucasnost a kam smérujeme
* Vyvoj generativnich model( (ChatGPT, DALL-E, MidJourney).

* Al tesi problémy ve zdravotnictvi, logistice, vzdélavani, ale pfinasi i vyzvy (etika,
dezinformace).

yoew

rule-based systemso =

neural networks > = misinformation

> SChatGPT .—m

g 3
8 CD 3 O o
= o = a
@ expert systems S (3 = O
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S ® ethics ® S
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FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Duvody pro ,,doby ledové® a pokroky Al

e Technologické limity: Nedostatek vypocetniho vykonu a dat.

* Prehnana ocCekavani: Nedosazené sliby vyvolaly pokles financovani.

Timeline of Al Development

Popularity * 1950s-1960s: First Al boom - the
age of reasoning, prototype Al
developed

Explosive = 1970s: Al winter |
Growth *  1980s-1990s: Second Al boom: the

age of Knowledge representation
(appearance of expert systems
capable of reproducing human
decision-making)

= 1990s: Al winter Il

= 1997: Deep Blue beats Gary

E Kasparov

E * 2006: University of Toronto

E develops Deep Learning

|

|

New Hopes

! Al winter Il
i :

| Al winter |

i
i
|

* 2011: IBM’s Watson won Jeopardy

* 2016: Go software based on Deep
Learning beats world’s champions

1950 1956 1974 1980 1987 1993 Time




FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Data’”




Typy uceni v Al

e Supervised Learning (Uceni s ulitelem)

e Jak to funguje?
* Model se trénuje na oznacenych datech.

Labeled Data

g 8 g Machine ML Model Predictions
O D \\ /_’ #é - ‘:2__' A Triangle
Labels Q AllO O Circle

2.9

Tﬁkz Hegam A O

Test Data
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Typy uceni v Al

e Unsupervised Learning (Uceni bez uditele)
e Jak to funguje?

* Model se snazi najit strukturu v neoznacenych datech (napft. shlukovani dat).

Unlabelled Data Machine Results
OO0 ) 00
NON — ’ﬁ% — 00
oo

OO0




Typy uceni v Al

e Reinforcement Learning (Posilované uceni)

e Jak to funguje?
* Model se uci na zdkladé zpétné vazby (odmény a tresty) béhem interakce s

prostredim.
internal state Qr‘! eward
1 environment
. action B J—
7

learning rate o
inverse temperature
discount rate y

observation
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Umeély neuron

S ST

§ Xy _"@\\

é Xy —P(~L y ‘
> X ——N:)/’ >
= e A Vyst

= “ " - ystup
¢ _ Agregacni  Aktivacni

> R i % funkce funkce neuronu

Vahy spojeni  T¢&lo neuronu

Vstupy X1y weey Xy weey Xy modeluji dendrity,
Vahy spojeni Wi, ey Wiy oy W, modeluji synapse,
Vystup y

simuluje ¢innost axonu.
Agregace vstupnich signal(i, prahovani a nasledné jejich nelinearni zobrazeni predstavuji

model téla neuronu, tj. vyhodnoceni celkového vstupniho aktivacniho potencialu a jeho
transformaci na vystupni signal.
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Prenos signalu umélym neuronem

=S :o" "." :..'

5 xu—

5 N

é 2 — T y .
> X3 _—»@” ] »
= B - - o Vystup
> X _ Agregacni  Aktivacni

> R i % funkce funkce neuronu

Vahy spojeni  T¢&lo neuronu

Konfluence - splynuti
Zj = Xj @ Wi
kde @ je obecny operator konfluence

Operator konfluence @ nahradime prostym soucinem hodnot X; a W;.
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Prenos signalu umélym neuronem

2

o

> X3 —Pw) , g
= S Vystup
5 .

F oy — Aktivagéni

> R ] ; funkce ; neuronu

Vahy spojeni  T¢&lo neuronu

Agregace — seskupeni a prahovani
n

ya=GZi

i=0

Operator agregace G nahradime prostym souétem (véetné prahu)

n
yazzxi 'Wi +W0

i=1
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Prenos signalu umélym neuronem

2

o

= N

> Xy — . g
= S P . . Vystup
2 Agregacni  Aktivagni

2 X ——>./‘ (we) ‘ neuronu

funkce funkce

Vahy spojeni  T¢&lo neuronu

Aktivace — nelinedrni zobrazeni vstupniho potencidlu

y = ¢(ya)
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| funkce

ivachni

Akt

Bipolérni skokovi funkce
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Hyperbolicko—tangencidlni funkce
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] 5

Yo = 0
Yoy < 0

Yo > 1
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Linearni funkce
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Gaussova funkce
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Uceni umélé neuronové sitée

Uceni
Je proces, kdy se sit pfizplsobuje (adaptuje) vnéjsimu prostiedi, které na ni plsobi

prostfednictvim dat — vzor( ziskanych méfenim (pozorovanim) na objektu, jehoz vlastnosti
ma v konecné fazi reprezentovat, pfipadné na problému, ktery ma nasledné resit.

Uceni se déli na trénovani, testovani a validaci.

Cil uceni

Cilem uceni neuronové sité je nastavit parametry sité tak, aby davala pozadované
vysledky.

V biologickych sitich jsou zkuSenosti jsou uloZeny v synapsich.

V umélych neuronovych sitich jsou zkuSenosti uloZeny v jejich matematickém
ekvivalentu - vahach.
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Uceni umélé neuronové sitée

Zakladni typy uceni

Uceni s ucitelem

Podobné jako v biologickych sitich je zde vyuZita zpétna

vazba. Neuronové siti jsou predkladany pfislusné vzory. Vstup
Na zakladé aktualniho nastaveni je zjistén aktudlni —
vysledek. Ten porovname s vyzadovanym vysledkem a
uréime chybu. Poté je spocitana nutna korekce (dle typu
neuronové sité) a upraveny hodnoty vah, prahf,
pfipadné strmosti aktivacnich funkci, aby se snizila
hodnota chyby. Toto se opakuje az do dosazeni
stanovené minimalni chyby.

Ucitel

3
Uceni bez ucitele Vstup
PFi uceni bez ucitele neni vyhodnocovan vystup. PFi >
tomto uceni je vystup doptedu neznamy. Sit dostava na v

vstup sadu vzoru, které si sama tfidi. Bud'si vzory tfidi do
skupin a reaguje na typického zastupce, nebo si

Algoritmus
v._ o p .. uleni
pfizpUsobi topologii vlastnostem vstupu.
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Topologie umeélych neuronovych siti

Neuronové
sité
Redlné Vstupy Binarni
vstupy vstupy
: v v
S ufitelem Bez utitele Uteni S ucitelem Bez uditele
; ; A 4 ; ; 1
Perceptron Vicevrtvy Kohonenova site | Hopfieldova Carpenter Hemmingova

perceptron sit’ sit’ Grossbergova sit’
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Topologie umeélych neuronovych siti

Skryté vrstvy

Vstupni vrstva
Vystupni vrstva
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Topologie umeélych neuronovych siti

Rekurentni neuronova sit

Dopiedna neuronova sit
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UNS — néktera historicka fakta

1943 McCulloch, Pitts matematicky model neuronu — umély neuron
1949 Hebb pravidlo pro uceni, adaptace vah (synapsi)
1951 Minsky a kol. Neuropogéita¢ Snark
1957 Rosenblatt Perceptron, uceni
1958 Rosenblatt Neuropocita¢ Mark | Perceptron
1959 Windrow, Hoff Model neuronu ADALINE (ADaptive Linear Neuron)
1962 Windrow, Hoff Neuronova sit’' MADALINE (Many ADALINE)
1969 Minsky Kritika perceptronu, neschopnost modelovat funkci
XOR
70. léta utlum
shers. Kononen tehy vz
1982, 84 Hopfield symetrické neuronové sité
1986 Rumelhart, Hinton, McClelland | Algoritmus zpétného Sifeni chyby, Backpropagation
1987 Kohonen samoorganizujici se sit’ (Kohonenova mapa)
1987 Konference v San Diego 1700 ucastnikd zaklada International Neural Network

Society (INNS)
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UNS — néktera historicka fakta

/McCulloch/Pitts Neurons

/Hehbs Organization of Behavior
‘,.Rosenblatts Perceptron
/Multi-Layer Perceptrons
/Backpropagation
/Hopfield Networks

onvolutional Neural Networks
ong Short-Term Memory (LSTM)
eep Learning
(Deep Learning with GPUs

L1 [ [ |

1940 1950 1960 1970 1980 1990 2000 20‘10
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Linearni algebra




Zaklady vektoru

e Co je vektor?
* Usporadana mnozina Cisel reprezentujici bod, smér nebo silu v prostoru.

* Reprezentace

* Sloupcovy (?L)
 Radkovy (3 4)

Vektory jsou prvky linearnich prostorli a slouzi jako zakladni stavebni bloky pro
reprezentaci dat i parametrti v neuronovych sitich.




Zaklady vektoru

e Zakladni operace
» Scitani a odcitani
(al, ap, ...,an) + (bl, bz, ,bn) = (a1 + bli a, + bz, ., A + bn)
a=(513),b=(2,2,3),a+b=(7,3,6)

e Skalarni nasobeni

k-(aq,ay, ...,a,) =(k-a,k-ay, ... k-a,)
3:-(2,1,4) =(6,3,12)




Zaklady vektoru

e Zakladni operace
e Skalarni (dot) soucin
a = (aq,a,,..,a,), b=(by,b,, .., b,)
a-b=(a; by,a, by, ..,a, by,)
a=(5,1,3),b=(2,2,3),a-b=1(10,2,9)

* Norma vektoru - Norma vektoru udava jeho délku nebo velikost.

Soucet absolutnich hodnot jednotlivych slozek (L1 norma)

Euklidovskd (L2 norma) lall = Va? + a2 + -+ a2

Vice informaci o normach s vizualizaci



https://montjoile.medium.com/l0-norm-l1-norm-l2-norm-l-infinity-norm-7a7d18a4f40c
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Zaklady matic

* Coje matice?

Usporadana tabulka Cisel usporadanych do radku a sloupcd.
Definice: Matice 4 o rozmérech m x n ma m radkud a n sloupca.

* Reprezentace

) 1 1 4
Matice 2x3 (2 c 1)
2 1
* Matice 3x2 1 2)
1 5

Indexace prvk(: Prvek a;; je umisten na i-tém radku a j-tém sloupci.




Zaklady matic

e Zakladni operace
e Scitani a odecitani
* Operace se provadi po jednotlivych prvcich.
* Matice musi mit stejné rozmery.

A=y 5 1)B=( 1 )are=(3 ¢ 3)

» Skalarni nasobeni
2 1 6 3
3- (1 2) = (3 6)
1 3 3 9




Zaklady matic

e Zakladni operace
* Nasobeni matic

* Soucin matic A a B (oznaéme A jako m x n a B jako n x p) je matice C o
rozmérech m x p, kde prvek nové matice je

n
Cij = E Qikbi;
k=1

* Pocet sloupct matice A musi odpovidat poctu radkd matice B.




Zaklady matic

e Zakladni operace
* Nasobeni matic
* Pocet sloupcli matice A musi odpovidat poctu radkd matice B.

1 2 5 6
1= 1) 2=( 3)
1-54+2-7 1-6—!—2-8)_(19 22)

O_A’B_(3-5+4-7 3-6+4-8 43 50
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Zaklady matic

e Zakladni operace
* Transpozice
* Operace, ktera prevraci matici pres jeji hlavni diagonalu.

* Oznacujese AT .
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Zaklady matic

e Zakladni operace
* Inverze
* Inverzni matice A™! je takova matice, ze: A-A1=A1A=1
* Matice A musi byt ¢tvercova.

* Matice A musi byt regularni.
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Zaklady tenzoru

* Cojetenzor?
* Tenzor je obecnéjsi pojem nez matice.
* Umoznuje reprezentaci dat s vice nez dvéma rozméry.
* Rozsifuje koncepty:
* Skaldr (hodnost 0)
* Vektor (hodnost 1)
* Matice (hodnost 2)
e Tenzor (hodnost > 3)

* UmozZnuje modelovat a zpracovavat data s komplexni strukturou, coz je klicové v
modernim strojovém uceni.




Zaklady tenzoru

» Priklady tenzort
* QObrazy
* Obrazek lze reprezentovat jako 3D tenzor: vyska, Sitka, pocet kandl( (napt. RGB).
* Obrazek o rozmérech 256 x 256 pixell s 3 kandly = tvar tenzoru: [256, 256, 3].

» Davky dat (batches)
* Pritrénovani neuronovych siti se data ¢asto zpracovavaji po davkach.
» Batch obsahujici 32 obrazkd (kazdy s tvarem [256, 256, 3])
- tvar tenzoru: [32, 256, 256, 3].
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Zaklady tenzoru

e Zakladni operace
* Reshaping (preskupeni)
* Pretvoreni tvaru tenzoru bez zmény jeho dat.
* Umoznuje adaptovat data na pozadavky konkrétniho modelu.

* Priklad: Z tenzoru tvaru [28, 28, 1] (Cernobily obraz) na tenzor tvaru [784]
(serializovany obraz = v jednom vektoru).
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Zaklady tenzoru

e Zakladni operace
* Kontrakce (slozené nasobeni)
e Zobecnéni maticového nasobeni na vyssi dimenze.
* Probiha scitani pres jeden nebo vice index(l tenzoru.

e Scitani a skalarni nasobeni

* Provadi se element-wise (po prvcich) stejné jako u matic nebo vektord.
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NumPy
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Pouziti knihovny NumPy

e Zaklady knihovny NumPy

* Instalace knihovny — pip install numpy
* Import knihovny ve skriptu —import numpy as np
* Tvorba poli (tenzorll)

arr_1d = np.array([1, 2, 3, 4])
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])

* Specialni funkce
zeros = np.zeros((3, 3))
ones = np.ones((2, 4))
rng = np.arange(0, 10, 2) #1[0,2,4,6, 8]
linsp = np.linspace(0, 1,5)  #][0, 0.25, 0.5, 0.75, 1.0]




Pouziti knihovny NumPy

e Zaklady knihovny NumPy

» Zakladni vlastnosti
print(arr_2d.shape)
print(arr_2d.dtype)
print(arr_2d.ndim)

* Indexovani a slicing
arr =np.array([10, 11, 12, 13, 14, 15])
print(arr[0])  # prvni prvek
print(arr[1:4]) # prvky od indexu 1 do 3 (4 se nebere)
print(arr(-1]) # posledni prvek

e Obdobné v maticich a tenzorech
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Pouziti knihovny NumPy

e Zaklady knihovny NumPy

* Manipulace s poli — reshape a ravel
arr = np.arange(12)
mat = arr.reshape((3, 4))
print(mat

flat = mat.ravel()
print(flat)




Pouziti knihovny NumPy

e Zaklady knihovny NumPy

* Manipulace s poli — skladani poli — concatenate, hstack, vstack
a =np.array([1, 2, 3])
b =np.array([4, 5, 6])
c_concat = np.concatenate((a, b))
c_hstack = np.hstack((a, b))  # pro 1D to bude podobné
print(c_concat) #[1, 2, 3, 4, 5, 6]
A =np.array([[1, 2], [3, 4]])
B =np.array([[5, 6], [7, 8]])
AB_v = np.vstack((A, B)) # Vertikdlni spojeni (pod sebe)
AB_h = np.hstack((A, B)) # HorizontdlIni spojeni (vedle sebe)




Pouziti knihovny Matplotlib

» Grafické zobrazeni
* Instalace knihovny — pip install matplotlib
* Import knihovny ve skriptu —import matplotlib.pyplot as plt

e Zakladni graf
import matplotlib.pyplot as plt
x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)
plt.plot(x, y, label="sin(x)’)
plt.title(’Zdkladni sinusovka’)
plt.xlabel('x’)
plt.ylabel('sin(x)’)
plt.legend()
plt.show()




Pouziti knihovny Matplotlib

» Grafické zobrazeni

* Scatter
x = np.random.randn(100)
y = np.random.randn(100)
plt.scatter(x, y, c="red’, alpha=0.5, label="Ndhodné body')
plt.title('Scatter plot ukdzka')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()




Pouziti knihovny Matplotlib

» Grafické zobrazeni

* Histogram
data = np.random.randn(500)
plt.hist(data, bins=20, edgecolor="black’, alpha=0.7)
plt.title('Histogram rozloZeni')
plt.xlabel('Hodnota')
plt.ylabel('Frekvence')
plt.show()




Pouziti knihovny Matplotlib

» Grafické zobrazeni

* Heatmap (imshow/matshow)
mat_data = np.random.rand(10, 10)

plt.imshow(mat_data, cmap='viridis')
plt.colorbar(label="Hodnota’')
plt.title('"Heatmap 10x10')

plt.show()

plt.matshow(mat_data, cmap="viridis')

plt.colorbar(label="Hodnota’')
plt.show()
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Pouziti knihovny Matplotlib

» Grafické zobrazeni
* Vizualizace vicerozmérnych dat (tenzor(l) — rfez dat

# Tenzor 3D: 5 "vrstev" (napr. 5 obrdzk( 10x10)
tensor_3d = np.random.rand(5, 10, 10)

fig, axes = plt.subplots(1, 5, figsize=(15, 3))
foriinrange(5):
axes[i].imshow(tensor_3d([i], cmap='viridis')
axes[i].set_title(f"Vrstva {i}")
axes[i].axis('off')

plt.show()
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Pouziti knihovny Matplotlib

» Grafické zobrazeni
* Vizualizace vicerozmérnych dat (tenzor() — primérovani

# Tenzor 3D: 5 "vrstev" (napr. 5 obrdzk( 10x10)
tensor_3d = np.random.rand(5, 10, 10)

mean_image = tensor_3d.mean(axis=0) # prumér pres 5 vrstev => vysledkem je 2D (10x10)
plt.imshow(mean_image, cmap='viridis')

plt.title('Prdmeér 3D dat pres 1. dimenzi')

plt.colorbar()

plt.show()
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Perceptron
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Model perceptronu

* Vykonnym prvkem perceptronu je model neuronu s linearné vazenou agregacni
funkci, kde plvodne byla uvazovdna pouze skokova aktivacni funkce

= Prah N
g X1 &) !
o neuronu |
; I
|
g x2 ya '— | y
] ~ >
> X3 :
- Vv
------- | stu
g Agregacni Aktivaéni | y P
XR
> \ RN funkce funkce ! neuronu
Vahy spojeni Télo neuronu
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Model perceptronu

* Agregacni funkce
Ya =zxi'Wi+Wo

l

e Aktivacni funkce

{ 1 proy, >0

—1 proy, <0
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Vyuziti perceptronu

* Prostfednictvim perceptronu lze fesit pouze problémy, jejichz feSeni jsou
linedrné separovatelna. Tj. jsme schopni separovat data pouze do dvou
skupin, data navic museji byt oddélitelna nadrovinou.

Tiida A /

Tiida A

Ttida B THda B




Odezva perceptronu

e V pripadé perceptronu je na konkrétni mnozinu vstupu odpovédi jedina
skalarni hodnota y.
Pro odezvu plati: y = ¢(ya),

kde ¢ je aktivacni funkce

Y, je potencial neuronu

Pro vypocet potencidlu plati y, = Z?:o Wi * X;

T

Pro vztah vypoctu potencialu neuronu lze pouzit maticovy zapis: y, = w'x
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Hebbuv zakon uceni

* Pokud je hodnota vstupu do neuronu synchronni s o¢ekavanym vystupem,
pak se vaha spojeni mezi prislusSnym vstupem a neuronem posiluje, pokud je
asynchronni (hodnoty nejsou shodné), vaha se oslabuje.

* Matematicky toto Ize v pripadé bipolarnich vstupt a aktivaéni funkce zapsat

vztahem:
W; = W; + Xi . t,

kde t je oCekavany vystup z neuronu
X;je vstup

w; je vaha pFislusného vstupu
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Algoritmus chyboveho uceni perceptronu

* Nahodné nastav vahy neuronu w, zvol koeficient rychlosti uceni «.

* Dokud neni splnéna podminka zastaveni:

* Pro kazdy vstup z trénovaci mnoziny:
* Spocitej vystupni hodnotu neuronu y.

* Spocitej chybu na vystupu e = (t — y).
* Adaptuj prah neuronu dle vztahuw; = wg +a - e
* Adaptuj vahy neuronu dle vztahuw; = w; + a0 - x; - e




FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Vzorovy priklad — trideni chipsu

Chceme navrhnout systém pro tridéni chipsu. Bud pljde bramblrek do sacku,
nebo do kose.




Vzorovy priklad — trideni chipsu

Chceme navrhnout systém pro tridéni chipsu. Topologie daného perceptronu:

%=1

Bipoldrni skokovd funkce

Agregacni Aktivaéni
funkce funkce L o 5




Vzorovy priklad — trideni chipsu

Jedna se o typicky priklad uceni s ucitelem -> tvorba datasetu.

m Intenzita odrazeného svétla Vysledek

0,11¢g 0,78 Vyradit
0,27g 0,68 Ponechat
0,07 g 0,33 Vyradit
0,12 g 0,37 Vyradit
0,34g 0,63 Ponechat
047g 0,72 Ponechat
0,28¢g 0,78 Ponechat
044g 0,92 Ponechat
0,13 g 0,44 Vyradit
0,19g 0,27 Vyradit




Vzorovy priklad — trideni chipsu

Jedna se o typicky priklad uceni s ucitelem -> tvorba datasetu.

m Intenzita svétla | Vysledek '

0,11g 0,78 Vyradit 02
0,27¢g 0,68 Ponechat oe . .
L ]
0,07g 0,33 Vyradit 7 .
L ]
0,12 g 0,37 Vyfadit o
034g 0,63 Ponechat o .
0,47g 0,72 Ponechat o .
[ ]
0,28 ¢g 0,78 Ponechat > .
044¢g 0,92 Ponechat e
0,13g 0,44 VyFadit o
0,19g 0,27 Vyradit ’ 0 0,05 01 0,15 02 0,25 03 0,35 04 0.45 05
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Vzorovy priklad — tridéni chipsu
Transformace a normalizace trénovaci mnoziny.

m Intenzita odrazeného svétla Vysledek

-0,8 0,5692 -1
0 0,2615 1
-l -0,8154 -1
-0,75 -0,6923 -1
0,35 0,1077 1
1 0,3846 1
0,05 0,5692 1
0,85 1 1
-0,7 -0,4769 1

0,4 -1 -1
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Hebbuv zakon uceni

* Pokud je hodnota vstupu do neuronu synchronni s o¢ekavanym vystupem,
pak se vaha spojeni mezi prislusSnym vstupem a neuronem posiluje, pokud je
asynchronni (hodnoty nejsou shodné), vaha se oslabuje.

* Matematicky toto Ize v pripadé bipolarnich vstupt a aktivaéni funkce zapsat

vztahem:
W; = W; + Xi . t,

kde t je oCekavany vystup z neuronu
X;je vstup

w; je vaha pFislusného vstupu
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Algoritmus chyboveho uceni perceptronu

* Nahodné nastav vahy neuronu w, zvol koeficient rychlosti uceni «.

* Dokud neni splnéna podminka zastaveni:

* Pro kazdy vstup z trénovaci mnoziny:
* Spocitej vystupni hodnotu neuronu y.

* Spocitej chybu na vystupu e = (t — y).
* Adaptuj prah neuronu dle vztahuw; = wg +a - e
* Adaptuj vahy neuronu dle vztahuw; = w; + a0 - x; - e
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Vzorovy priklad — trideni chipsu

Trénovani pomoci Hebbova zakona uceni.

Hebbovo uceni

w; = w, +xt =..

w, = 0 +(-0,8)(-1) =0,8

w, = 0 +(0,5692)(-1) = -0,5692
w, = 1 +(1)(1) =0

wy = 0,8 +(0)(1) =0,8

w, = -0,5692 +(0,2615)(1) =-0,3077
w, = 0 +(1)(-1) =-1

w, = 0,8 +(-1)(-1) =1,8

w, = -0,3077 +(-0,8154)(-1) =0,5077
w, = 1 +(1)(-1) =22

w, = 1,8 +(-0,75)(-1) =2,55

w, = 0,5077 +(-0,6923)(-1) =1,2




Vzorovy priklad — trideni chipsu

Trénovani pomoci Hebbova zdkona uceni. Pocet epoch (1 vs. 5).
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Vzorovy priklad — trideni chipsu

Trénovani pomoci chybového uceni perceptronu.

Chybové uceni

w; = w; +ax(t-y) = ..

Wy = 0 +0,1(-1-1) =-0,2

w, = 0 +0,1(-0,8)(-1-1) =0,16

w, = 0 +0,1(0,5692) (-1-1) =-0,1138
Wy = 0,2 + =




Vzorovy priklad — trideni chipsu

Trénovani pomoci chybového uéeni perceptronu. Pocet epoch (1 vs. 5).
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Vzorovy priklad — kvalita susenek

Hmotnost susenky (g): IdedIni rozmezi je mezi 15a 17 g.
Prdmér susenky (mm): Optimalni hodnota se pohybuje mezi 50 a 55 mm.

Kvalita = 1: SuSenka ma obé hodnoty v optimalnim rozmezi.
Kvalita = 0: Alespon jeden parametr je mimo dané rozpéti.

Hmotnost susenky (g) Prdmeér susenky (mm) Kvalita
16.0 52 1
15.5 51 1
14.8 50 0
16.5 54 1
17.2 53 0
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Vzorovy priklad — kvalita susenek

57,00

Hmotnost susenky

(g):15a17¢g.

Prdmér susenky . 1

(mm): 50 a 55 mm. 400 - .

56,00 L

, 53,00 [ ] [ ] L ]
Costim?
52,00 [ ] e e [ ]
51,00 [ ] [ ]
50,00 [ ] [ ] [ ]

49,00 . .

48,00
14,00 14,50 15,00 15,50 16,00 16,50 17,00 17,50 18,00
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Formalni model neuronu

* Oproti samotnému perceptronu mohou byt uvazovany i jiné aktivacni funkce

Vstupy neuronu

---------------------------------------------
. O
o °,

neuronu

- ] Vyst
Agregacni  Aktivaeni ystup
funkce funkce neuronu

‘e o*
----------------------------------------------

- m m .
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Bipolirni skokova funkce
b
05 .................................
= OfF---- e
0.5
-1 R R
-5 0
¥

Linearni saturovani funkce

Yas

1y = tanhy,

Lineami funkce

Y, > 1 0.8

~l<y,>1 8

Ya < _1 0.4
0.2

Gaussova funkce
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3D zobrazeni linearni aktivace

56

Izoliniové kfivky (linearni aktivacni funkce)
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3D plocha se saturovanou linearni aktivacni funkci s Izoliniové krivky se saturovanou aktivaci
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3D plocha se sigmoidalni aktivaéni funkci
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Rozdilnost akt. funkci — chovani vystupu

* Linearni aktivacni funkce
* Vystup: Neomezena redlna hodnota (linedrni kombinace vstup().
* Interpretace: reprezentuje "silu aktivace".

e Saturovana linearni aktivacni funkce
* \ystup: Linearni kombinace vstupu otfiznutd do pfedem daného intervalu.
* Interpretace: Reprezentuje "silu aktivace" s omezenym rozsahem.

e Sigmoidalni aktivacni funkce
* Vystup: Hodnota v intervalu (napt.) (0,1)(0,1).

* Interpretace: Vystup lze interpretovat jako pravdépodobnost nebo jistotu
pfifazeni k dané tridé;




Celkovy postup algoritmu uceni

* Rozdéleni dat na testovaci, trénovaci a validacni mnozinu
* Nastaveni vah a prah( sité, nastaveni koeficientu uceni a

* Pro kazdou dvojici: vzor - oCekavany vystup,
e Spocitani odezvy sité
* Spocditani chyby a aktualizace vah a prah
e Test ukonceni algoritmu

* Maximalni pocet epoch
* Zména hodnoty ucelové funkce ddle neklesa

* Dosazeno kapacity sité — vykon na validaéni mnoziné se zhorSuje = pretrénovani
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ProC provad

et validaci?

E(s)

Prubéh E(s) pro trénovaci mnozinu
Prub¢h E(s) pro validaéni mnozinu
Vhodny okamzik pro ukonceni uceni

Chyby u FFNN

Q
e= Z(tk — Yi)?
k=1

N
1
E=NZei
i=1

N — pocet vzor(
Q — pocet vystupl




Varianty uceni ANN

* Online
* Po kazdém vzoru dojde k aktualizaci hodnot vah a prah.

e Offline
* Zmény vah a prah( se scitaji v docasné proménné a jejich aktualizace se
provede az na konci epochy trénovani (po celé epose).
* Davkové (batch)

* Kombinuje pfedchozi varianty, kde se aktualizace provadi po davkach vzorku
(vétsSinou po 64, 32, 16, 8, 4 vzorech).

* Kombinuje vyhody a nevyhody obou variant (kompromis rychlosti a
pamétové narocnosti)
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Umela neuronova sit

Artificial Neural Network (ANN)




Obecné schéma ANN

* Vahy spojeni mezi jednotlivymi neurony jsou oznaceny symbolem w;.

* Prislusné indexy charakterizuji spojeni od i-tého zdrojového neuronu
k j-tému cilovému neuronu.

O—O

Zdrojovy Cilovy

ncuron ncuron




Topologie ANN

* Topologie (geometrie, struktura, architektura) neuronové sité popisuje
umisténi jednotlivych neuront v siti a jejich propojeni.

* SpoleCnym rysem je vrstevnata struktura, kde rozliSujeme:
e vstupni vrstvu,

* samotnou vrstvu nebo vrstvy skryté,
* vystupni vrstvu.

* Topologie je pak definovana poctem neuronu v jednotlivych vrstvach,
poctem vrstev a vlastnimi propojenimi jednotlivych neuron(/vrstev.
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Topologie ANN

* Podle toku signalu ANN délime na
* dopredné, v nichz se signal Sifi po orientovanych spojenich jednim smérem (od
vstupni vrstvy k vystupni vrstve);
* zpétnovazebni (rekurentni), u nichz existuji mezi neurony, nebo vrstvami zpétné

vazby. Je tfeba poznamenat, ze v téchto sitich je nékdy tézko definovat vstupni a
vystupni vrstvy.
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Rekurentni ANN
* Nejjednodussi rekurentni ANN je jeden neuron se
zpé&tnou vazbou. Vstup , A
* Necht je neuron systém s dynamickym prenosem: 1
Tn@ =—v +h + v
dt
A
Tn% = —(1-A)v+h
H_/

A<1 A=1 A>1
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Rekurentni ANN T,,% (1= A+
—\
A<l A=1 A>1

Exponencialni relaxace Integrace vstupu Exponencialni rist




Rekurentni ANN

* Atraktor — konecny stav, do kterého dynamicky systém casem sméruje.

* ProA > 1 je neuron po privedeni vstupu ,pfitahovan” do atraktoru.
1% 1%




Rekurentni ANN

* Pokud vystup neuronu omezime bipolarni aktivacni funkci, tak se nutné
ustali v dané hodnoté vystupu (typicky -1, 1 nebo O, 1).

e Z jakéhokoli stavu se pak takovy neuron ustali v atraktorech.

* Pro vice takovych neuronu plati ustaleni v néjakém stavu z jejich
stavového vektoru (2" moznych stav().
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Hopfieldova sit

* Kdyz dané neurony spojime vzajemné, tak se z nékterych drive
stabilnich stavu stanou stavy nestabilni.

* Podle spojeni pak konverguji do vzajemné komplementarnich mnozin
z pavodniho stavového prostoru.




Hopfieldova sit
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Diskrétni Hopfieldova sit

* Pracuje jako autoasociativni pamét.

* Na zakladé neuplnych informaci si tedy dokaze vybavit vzor
ulozeny v paméti.

n
» Agregacni funkce je dana vztahem: Y, = in "W
i1

1 pro y,20

* Pro aktivacni funkci plati: Y = '[_1 pro y. <0




Diskrétni Hopfieldova sit

* Hodnoty vstupu i vystupu jsou bipolarni.

Kazdy neuron tedy vypocte svij potencidl a aktivuje svuj
vystup podle bipolarni aktivacni funkce.

Kapacita sité je nizka, musi byt splnéno $<0.138n

Automaticky si pamatuje inverzni vzory

n ... kolika hodnotami je popsan jeden vzor

S ... kolik je vzoru k zapamatovani




Diskrétni Hopfieldova sit

* RozliSujeme mezi fazi u€eni a fazi vybavovani
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Diskrétni Hopfieldova sit

* V pripadé, Ze na vstup je poslana kombinace, ktera neni blizka
zadnému ze vzorl, mohou nastat nasledujici situace:
* sit konverguje ke vzoru, ktery nebyl sou¢asti paméti (tzv. fantom);

* sit nekonverguje (osciluje mezi dvéma stavy);

P
id

* sit konverguje k nékterému ze vzorud uloZenych v pameéti (pokud se vstup
nachazi v oblasti atrakce nékterého ze vzoru).

* Aplikace Hopfieldovy sité je omezena nejen nizkou kapacitou
pameéti, ale také urcitou nejistotou vysledku.




Diskrétni Hopfieldova sit

* Odezva Hopfieldovy sité jako autoasociativni paméti (vybavovani
sité) probiha iterativnim porovnavanim vstup( sité (v prvni iteraci)
a nasledné predchozich vystupt (v dalSich iteracich) s ulozenymi
vzory podle Hammingovy metriky a za odpovéd se bere vzor v
pameti, ktery ma tuto vzdalenost nejkratsi.

 Sit konverguje do stabilniho stavu, ktery se uz dale neméni.
* Hopfieldova sit jednoznaéné definovand jejimi vahami, které je

zvykem znacit symbolem w;;, kde i je index neuronu, ze ktereho

signal vystupuje aj je index neuronu, do kterého signal vstupuje.




Uceni Hopfieldovy site

* Aplikuje se Hebblv zdkon uceni

* Matice vah w je symetricka matice n x n, kde n je pocet vstupt do
siteé, pro kazdy prvek matice w plati:

(s
D XXy Pro i j
k=1

0 pro i=]j,

\

kde S je pocet vzorl trénovaci mnoziny




Vybavovani Hopfieldovy sité

1) vi0)=x 1=1...n

2) v,-(k+1)=f(iznl‘,vvi,-yi(k)j j=1-n

3) Krok 2) se opakuje do ustaleni
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Priklad 1

* Dva vzory k zapamatovani 0 X X X
x;=[1 1 1 -1 Lo X0 X X
X, =[1 1 -1 —1] x x 0 X
s o X X x 0]
w, = ;inxkj pro f;t j _ _
0 pro 1=, O 2 0 -2
Wiy = Xq1 - Xqp +Xo1 - Xpp =2 W = 2 00 =2
Wyg = Xq1* X153 + Xoq - X9 =0 0 0 00
13 11 M3 21 723 _2 _2. 0 0

atd... - -
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Priklad 1 (0 2 0 -2
* Vlybavovani— 1. iterace W = 2 0 0 -2
0 0 0 O

test=[-1 1 -1 -1] 2 2.0 0
Yi (k+1): f(ZWijyi (k)j J=1--n

y; = f(0-(-D)+2-1+0-(-D) +(-2)- (-1))=  (4)=1

y, = £(2-(=1)+0-1+0-(-1) +(-2)- (-1)) = £(0)=1

yg = f(0-(-1)+0-1+0-(-1)+0-(-1))= f(0)=1

Y, = F((-2)-(-) +(-2)-1+0-(-1) +0-(-1)) = f(0)=1
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Priklad 1 0 2 0 -2
* Vybavovani — 2. iterace W= 2 0 0 -2
O O O O
y=[1 1 1 1] 2 20 0
-1 (Ew) -
i=1

y; = £(0-1+2-1+0-1+(-2)-1)= f(0)=1
y, = £(2:1+0-1+0-1+(-2)-1)= f(0)=1
ys = f(0-1+0-1+0-1+0-1)= f(0)=1
Vs = F((-2)-1+(-2)-1+0-1+0-1) = f(~4) = -
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Priklad 1 0 2 0 -2

* \lybavovani — 3. iterace W= 2 0 0 -2

0 O 0 O

y=[1 11 -1 2 20 0
RIS R

y; = £(0-142-1+0-1+(-2) - (-1)) = f(4)=1

y, = £(2:140-1+0-1+ (-2) - (-1)) = f(4)=1
ys=f(0-1+0-1+0-1+0-(-1))= f(0)=1

V4= T((-2)1+(-2)-1+0-1+0-(-1)) = f(-4)=-1




Diskrétni Hopfieldova sit

* V pripadé, Ze na vstup je poslana kombinace, ktera neni blizka
zadnému ze vzorl, mohou nastat nasledujici situace:
* sit konverguje ke vzoru, ktery nebyl sou¢asti paméti (tzv. fantom);

* sit nekonverguje (osciluje mezi dvéma stavy);

P
id

* sit konverguje k nékterému ze vzorud uloZenych v pameéti (pokud se vstup
nachazi v oblasti atrakce nékterého ze vzoru).

* Aplikace Hopfieldovy sité je omezena nejen nizkou kapacitou
pameéti, ale také urcitou nejistotou vysledku.




Hopfieldova sit

1
E — ——z TL,]SLS] - z HiSi
2 i,j -

* Prvni ¢ast rovnice predstavuje interakci mezi pary neuront, kde
vahové koeficienty urcuji, jak moc je interakce mezi dvéma neurony
i ajsilnd a zda je tato interakce excitacni (positivni vdha) nebo
inhibi¢ni (negativni vaha).

* Druha ¢ast rovnice zahrnuje prahy aktivace, které umoznuji
neuronlm zménit sv{j stav i bez vstupu od ostatnich neurond.




FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Hopfieldova sit

* Energeticka funkce ma lokalni minima v mistech, kde jsou ulozeny
vzpominky (stavy naucené pfri trénovani), ale také ,fantomy”

|

energy landscape

memories ¢* g &3 ¢
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Hopfieldova sit

7

* Pritvorbé Hopfieldovy sité pro reseni optimalizacniho problému je dllezité
postupovat systematicky, aby bylo zajisténo, Ze sit efektivné modeluje a resi
dany problém.

* Rozpoznani a specifikace problému: Definice optimalizacniho problému k
reseni, véetné vsech omezeni a cila.

* Reprezentace Hopfieldovy sité

* Neurony: Kazdy neuron v siti reprezentuje ¢ast reSeni problému. Musi byt uréeno, jak bude
struktura problému mapovana na neurony v siti.

* Stav neuronu: Stavy neuronu (obvykle binarni, tj. 0 nebo 1) reprezentuiji, zda je dand ¢ast
feseni zahrnuta nebo ne.




Hopfieldova sit

* Energeticka funkce

* Definice energetické funkce: Energeticka funkce je klicem k modelovani optimalizacniho
problému jako procesu minimalizace energetického stavu sité. Tato funkce by méla odrazet cil
optimalizace a omezeni problému.

* Penalizace nesplnéni omezeni: Energeticka funkce by méla zahrnovat c¢leny, které penalizuji
feseni nesplnujici omezeni problému.

* Dynamika sité

» Aktualizace neuronu: Definice pravidel pro aktualizaci stavl neuronu s cilem najit konfiguraci
minimalizujici energetickou funkci. Aktualizace mUZe byt asynchronni nebo synchronni.

* Konvergence: Zavedeni mechanism zajistujicich, Ze sit konverguje k stabilnimu stavu, ktery
reprezentuje optimalni nebo suboptimalni reseni.




Hopfieldova sit

* Dekddovani a validace reseni

* Dekddovani feseni: Po dosazZeni stabilniho stavu je nutné interpretovat stavy neuronut jako
reseni optimalizacniho problému.

* Qvéreni reSeni: Kontrola, zda dekddované feseni spliiuje vSechna omezeni a je optimalni nebo
prijatelné suboptimalni.

* Experimenty a ladéni sité

* Adjustace parametr(i: Experimenty s riznymi hodnotami parametr( sité (napf. vahy spojeni,
parametry penalizace, prahy aktualizace) pro zlepSeni vykonu a kvality feseni.

* Testovani na rlznych instancich problému: Testovani sité na rliznych datech nebo instancich
problému pro ovéreni robustnosti a univerzalnosti sitée.
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Odezva perceptronu

* \lypocet odezvy je vypocet vystupu perceptronu (y) na vstupni vektor

|

Vypocitejte odezvu daného perceptronu s bipolarni skokovou aktivacni funkci na vstup [x,, X,]

Agregacni Aktivacni
funkce funkce
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Odezva perceptronu

* \lypocet odezvy je vypocet vystupu na vstupni vektor

Wy —-0,5
W —-0,5

1. Vypocitejte odezvu daného perceptronu s bipolarni skokovou aktivacni funkci na
vstup [-2, 2]

Yg=1--05+-2-0542--05=-05-1—-1=-25
YVao=—25<0-oy=-1

Agregacni Aktivacni
funkce funkce




Odezva perceptronu

* \lypocet odezvy je vypocet vystupu na vstupni vektor

-[3)

2.  Vypocitejte odezvu daného perceptronu s bipolarni skokovou aktivaéni funkci na
vstup [-1, -1]

Va=1-0+-1-14-1--1=0-141=0
YVa=0=0->y=-1

Agregacni Aktivacni
funkce funkce




Odezva perceptronu

* \lypocet odezvy je vypocet vystupu na vstupni vektor

e

3.  Vypocitejte odezvu daného perceptronu s bipolarni skokovou aktivaéni funkci na
vstup [1, 2]

YVeo=1--14+1--1+4+2-2=-1-1+4=2
Ve =2>0->y=1

Agregacni Aktivacni
funkce funkce




FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Hebbuv zakon uceni

* Pokud je hodnota vstupu do neuronu synchronni s o¢ekavanym vystupem,
pak se vaha spojeni mezi prislusSnym vstupem a neuronem posiluje, pokud je
asynchronni (hodnoty nejsou shodné), vaha se oslabuje.

* Matematicky toto Ize v pripadé bipolarnich vstupt a aktivaéni funkce zapsat

vztahem:
W; = W; + Xi . t,

kde t je oCekavany vystup z neuronu
X;je vstup

w; je vaha pFislusného vstupu
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Trénovani perceptronu

* Méjme model perceptronu s bipolarni skokovou aktivacni funkci a nasledujici vzor
trénovaci mnoziny. Trénovani provedte s pomoci Hebbova zakona uceni.

vzl: x =[x, %],y =t

Wy
W»

1. Lze rovnou provést trénovani aplikaci pri¢tenim vyrazu x; - t k aktualni vaze w;

Agregacni Aktivacni
funkce funkce
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Trénovani perceptronu

* Méjme model perceptronu s bipolarni skokovou aktivacni funkci a nasledujici vzor
trénovaci mnoziny. Trénovani provedte s pomoci Hebbova zakona uceni.

vzl: x =[1,1],t =1

—0,5
g W= [ 0,5 ]
Agregacni Aktivacni —0 ) 5

funkce funkce

1. MuUZeme rovnou provést trénovani

-05+1-1

0,5
05+1-11|= [1,5‘ <= \/ysledné vahy
—-05+1-1 0,5

) )

—0,5
w=[0,5],w,,=
—0,5
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Trénovani perceptronu

* Méjme model perceptronu s bipolarni skokovou aktivacni funkci a nasledujici vzor
trénovaci mnoziny. Trénovani provedte s pomoci Hebbova zakona uceni.

vzl: x =[-2,1],t = -1

-1
Y
W=1|0
Agregacni Aktivacni 1

funkce funkce

1. MuUZeme rovnou provést trénovani

~1 ~1+1--1] [-2
W=|0|W,=|0+-2-—1|=| 2 | €= Vysledné vahy
1 1+1--1 0
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Trénovani perceptronu

* Méjme model perceptronu s bipolarni skokovou aktivacni funkci a nasledujici vzory
trénovaci mnoziny. Trénovani provedte s pomoci Hebbova zakona uceni.

vzl: x=[-1,1],t = —1

vz2: x = | =

Agregacni Aktivacni
funkce funkce

MUZeme rovnou provést trénovani

-1+1--1 - —2+1-1 -1
Wy, =[0+-1--1]|= 1 -> W, =|1+2-1 =[3]<—Wslednévéhy
1+1--1 0+—-1-1 -1
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Algoritmus chyboveho uceni perceptronu

* Nahodné nastav vahy neuronu w, zvol koeficient rychlosti uceni «.

* Dokud neni splnéna podminka zastaveni:

* Pro kazdy vstup z trénovaci mnoziny:
* Spocitej vystupni hodnotu neuronu y.

* Spocitej chybu na vystupu e = (t — y).
* Adaptuj prah neuronu dle vztahuw; = wg +a - e
* Adaptuj vahy neuronu dle vztahuw; = w; + a0 - x; - e
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Trénovani perceptronu

* Méjme model perceptronu s bipolarni skokovou aktivacni funkci a nasledujici vzor
trénovaci mnoziny. Trénovani provedte s pomoci chybového ucenipfia = 1.

vzl: x =[1,1],t =1

—0,5
g W= [ 0,5 ]
Agregacni Aktivacni —0 ) 5

funkce funkce

1. Vypocet odezvy perceptronu na vstup [1, 1]
YVg=1--05+1-05+1--05=-05+05-05=-05
Yo=-05<0-oy=-1
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Trénovani perceptronu

* Méjme model perceptronu s bipolarni skokovou aktivacni funkci a nasledujici vzor
trénovaci mnoziny. Trénovani provedte s pomoci chybového ucenipfia = 1.

vzl: x =[1,1],t =1
—-0,5

g W = [ 0,5
—0,5

Agregacni Aktivacni
funkce funkce

2. Vypocet chyby perceptronu dle daného vzoru: vstup [1, 1], oCekavany vystup 1
Odezva (vizkrok 1) y = —1
Chybae =t —y=(1-(-1)) =2
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Trénovani perceptronu

* Méjme model perceptronu s bipolarni skokovou aktivacni funkci a nasledujici vzor
trénovaci mnoziny. Trénovani provedte s pomoci chybového ucenipfia = 1.

vzl: x =[1,1],t =1
—-0,5

g W= [ 0,5
—0,5

Agregacni Aktivacni
funkce funkce

3. Aktualizacevahdlew; =w; +a-x;-e Chyba (viz krok 2) e = 2

—-05+1-2
05+1-2

—-0,5 -1,5
W = [ 0,5 ],Wn = = [ 2,5 ‘ <= \/ysledné vahy
—-0,5 —05+1-2 -1,5
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Samoorganizacni
mapy




Samoorganizacni mapy

* Vyuzivaji kompetitivni uceni.
* Jednotlivé vystupni neurony mezi sebou ,soutézi“ o aktivitu.
* V aktualni casovy okamzik je aktivni pouze jeden vystupni neuron.

Tato skupina neuronovy siti vychazi ze 2 publikaci:

* Willshaw, D.J., Von Der Malsburg, C. How patterned neural connections can be set
up by self organization (1976) Proceedings of the Royal Society of London -
Biological Sciences, 194 (1117), pp. 431-445. Cited 497 times.

* Kohonen, T. Self-organized formation of topologically correct feature maps (1982)
Biological Cybernetics, 43 (1), pp. 59-69. Cited 6008 times.



https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017166860&doi=10.1098%2frspb.1976.0087&partnerID=40&md5=ccff0eaa4b7e5a4845179d4316ecfb43
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017166860&doi=10.1098%2frspb.1976.0087&partnerID=40&md5=ccff0eaa4b7e5a4845179d4316ecfb43
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017166860&doi=10.1098%2frspb.1976.0087&partnerID=40&md5=ccff0eaa4b7e5a4845179d4316ecfb43
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020068152&doi=10.1007%2fBF00337288&partnerID=40&md5=7d7b7dbf6ea124f7f98e5d5b3e16bf80
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020068152&doi=10.1007%2fBF00337288&partnerID=40&md5=7d7b7dbf6ea124f7f98e5d5b3e16bf80
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Willshaw

* Definoval zaklady pro samoorganizacni mapy na zakladé pozorovani
biologickych procesd.

* Budeme hovofit o dvou dvourozmérnych listech prvk(, které maji predstavovat
presynapticky a postsynapticky list nervovych bunék.

* Presynaptické elementy jsou schopny vyslat axony a vytvofit synapse s elementy
postsynaptického listu, ¢imz se vytvofi mapovani mezi obéma listy.

e (@)
T 6 [
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Willshaw




Kohonenova samoorganizacni mapa

* Jedna se o neznaméjsi architekturou samoorganizacnich map.
* Kromé vstupnich terminald ma tato architektura pouze jednu vrstvu.

* Ta je oznaCovana jako kompeticni a byva usporadana do netrivialni
struktury (zpravidla néjakého typu dvojrozmérné mrizky).

» Struktura urcuje, které uzly spolu sousedi, coz je dulezité pfi uceni.
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Kohonenova samoorganizacni mapa

Vlastnosti:
* Provadi shlukovou analyzu vstupnich dat.
* Snahou nalézt prostorovou reprezentaci slozitych datovych struktur.

Topologie:
* Dvouvrstva sit (vstupni vrstva a kompeticni vrstva) s Uplnym propojenim mezi
vrstvami.

* Vystupni neurony jsou navic usporadany do néjaké topologické struktury
(dvourozmérna mtizka, jednorozmérna rada).




Topologie Kohonenovy mapy

kompetiéni @__ __@_ C e _@
vrstva
vahy

vstupy
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Topologie Kohonenovy mapy

CoO—C >—C >
d—Cg—C{
4545




Zivotni cyklus Kohonenovy mapy

Stupnl VZOry -

N vektoru orozméru R

Uceni Kohonenovy mapy

Matice vah
orozméru R x m

Pocet otekdvanych

)

shlukt m
X1

B X2
Vstupni

vektor

Vybavovani Kohonenovy

mapy

XR

Cislo
shluku
l...m




Zivotni cyklus Kohonenovy mapy

Wll W12 W13 e Wlm

Uceni
— Kohonenovy ——

mapy
Xn Xn Xl"l xn Xn
. o Co oy w, W, w . W
Matice vzoru Iterativniuceni ni n2 n3 nm
m Matice vah

Pocet shlukt

W21 W22 W23 s Wzm

\ 4

Vybavovani
X3
—>{ Kohonenovy — !
mapy Cislo shluku
X




Uceni Kohonenovy mapy

Vzhledem k tomu, ze spolu neurony vystupni vrstvy ,,soutézi, tak je
tfeba zvolit jaké kritérium definuje vitéze.

U Kohononovy mapy se jako toto kritérium voli vzdalenost vah neuronu
od vstupnich hodnot.

Nicméné by i okolni neurony méli byt aktualnim vystupem ovlivnény,
a proto se definuje okoli aktivniho neuronu.

Pro uceni je klicova struktura Kohonenovy mapy spolu s okolim
neuronu.
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Uceni Kohonenovy mapy

* Béhem uceni se Kohonenové mapé postupné predkladaji hodnoty
vstupnich dat a pro kazdy vstupni vektor vybere neuron J, ktery je
prostoroveé nejblize vstupnimu vektoru.

* Nasledné se upravi vahy tohoto neuronu a také vSech neuront v jeho
okoli smérem ke vstupnimu vektoru, dle vztahu:

wij(k—1)+a[$i(k)—wij(k'—l)], ro ] € (J),
Wij (k) - { 'w,,;j(k: — 1), fina,lz, ’




Uceni Kohonenovy mapy

w;i(k) = wii(k—1) 4+ alz;(k) —w;j(k—1)], proje€ o(J),
* Wi (k? — 1).}, jinak,
* Velikost okoli prfitom neni konstantni, ale béhem uceni se snizuje.

e Pocatecni hodnota okoli se voli tak, aby pokryvala asi polovinu vSech
neuronl v kompeticni vrstve.

* Doporucuje volit pocatecni koeficient rychlosti uceni a blizky 1 a postupné
ho béhem uceni snizovat az na hodnotu blizkou nule.

* Smyslem vztahu a uceni je, aby vitézny neuron, ktery nejlépe reprezentuje
aktudlni vstup, jesté vice zlepsil svou relativni pozici vici nému.




Uceni Kohonenovy mapy

1.

2.

Inicializuj vahy neuronu malymi ndhodnymi ¢isly, definuj rychlostni konstantu «,
polomér topologického sousedstvi R.
Dokud neni splnéno kritérium pro zastaveni:

2.1 Pro kazdy vstup X =[X,X,,--- X, ]T , Z trénovacich dat
2.1.1 prokazdé j=1, ..., m spocti:

D(j) = >"(w; —x)

2.1.2 Najdi index J takovy, ze D(J) je minimalni.
2.1.3 Aktualizuj vahy vSech neuront, které jsou v topologickém sousedstvi
neuronu J vztahem:

w; (k +1) = w, (k) +a (% —w; (k)
2.2 Aktualizuj parametr rychlosti uceni a zmensi polomér topologického

sousedstvi R.
2.3 Otestuj podminku ukonceni.
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Vybavovani Kohonenovy mapy

* Jakmile je Kohonenova mapa spravné adaptovana, je mozné ji vyuzit ke
shlukové analyze:
* Predlozime-li siti vstupni vektor, soutézi jednotlivé neurony o to, ktery z nich je vstupu
nejblize.
* Tento neuron se pak aktivuje (vystup roven jedné), zatimco ostatni neurony zUstavaji
pasivni (vystup roven nule). Kazdy neuron tak reprezentuje urcitou mnoZinu vstupnich

dat, které jsou mu blizké.

* Algoritmus: Provstup x=[x,%,x,]",
pro kazdé j =1, ..., m spocti:

D(i)=>"(w; —x)

Najdi index J takovy, ze D(J) je minimalni.
Vystupem je Cislo aktivovaného neuronu J
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Priklad
Miry lidi (boky, pas, hrud)
Zastoupeny modelky, muzi, Zzeny (stari 55-65 let)

ta0 ) X%,é :
1 2 3 I
1 aa 135 135 g R
R i R
62 93 &8.5000 = _ :
o g e
3 a2 135 135 :,&
BD;

120
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Priklad

Ze zobrazeni je zfejmé, Ze pocet shlukl m = 3.

Dale volme matici pocatecnich vah w. Rozmér 3 x 3 je dan jednak poctem
shlukl a jednak rozmérem vstupnich dat.

1 .E 3 160 X%X |
1 90 135 135 N R e
62 a3 88,5000 | ..
3 92 135 12 g ”
. S .
80;

120
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ad

Prik

Pocatednf stav neuron(

T
»  Cluster 1 ®

w  Cluster 2
Neurons
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4 * v
X
3 e
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Priklad

s Pocatecni stav neuron( 5 Iterace 1: UCeni na vzorku [1. 1.]
T T
% Cluster 1 ® % Cluster1 )
»%  Cluster 2 % Cluster 2
@ Neurons @ Neurons
X Selected Sample >
a4 X s ad X P ® % .
x* X
3 o 3
2 2 S
X X
X X
1 1
><3'gx x)&
0 0
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Priklad

. Iterace 1: Uceni na vzorku [1. 1.] Iterace 2: U¢eni na vzorku [4. 4.]
T 5 T
% Cluster1 » % Cluster 1
w  Cluster 2 w  Cluster 2
@ Neurons . @® Neurons e
ad X Selected Sample X7 X Selected Sample x5
x 4T x5
X X
3 3
2 @ 2 L
x X
® X
1 1
x>'§< x*x
0 0
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ad

Prik

Epoch 1, vzorek 2

eeeee |

Selected Sample X

X® x x
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ad

Prik

Epoch 1, vzorek 3

T
Cluster 1

X

w  Cluster 2

@ MNeurons
4l ¥ Selected Sample ® xxx

><x
3
2
, @
1 a&x
x

0
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ad

Prik

Epoch 1, vzorek 4

T
%  Cluster 1
w  Cluster 2
@ Neurons
4l » Selected Sample L xxale
xX
3
2
X
b ]
1
X
0
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ad

Prik

Epoch 6, vzorek 6

T
Cluster 1
Cluster 2
Neurons
Selected Sample X

X@®xx
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Reseni prikladu

Kohonenova mapa
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o V /
Cviceni
* Diskrétni Hopfieldova sit

* Uceni Hopfieldovy sité
e Vybavovani Hopfieldovy sité

* Kohonenova mapa
e Uceni Kohonenovy mapy
* Vybavovani Kohonenovy mapy




Uceni Hopfieldovy site

* Aplikuje se Hebblv zdkon uceni

* Matice vah w je symetricka matice n x n, kde n je pocet vstupt do
siteé, pro kazdy prvek matice w plati:

(s
D XXy Pro i j
k=1

0 pro i=]j,

\

kde S je pocet vzorl trénovaci mnoziny




Vybavovani Hopfieldovy sité

1) vi0)=x 1=1...n

2) v,-(k+1)=f(iznl‘,vvi,-yi(k)j j=1-n

3) Krok 2) se opakuje do ustaleni
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Priklad 1

* Dva vzory k zapamatovani 0 X X X
x;=[1 1 1 -1 Lo X0 X X
X, =[1 1 -1 —1] x x 0 X
s o X X x 0]
w, = ;inxkj pro f;t j _ _
0 pro 1=, O 2 0 -2
Wiy = Xq1 - Xqp +Xo1 - Xpp =2 W = 2 00 =2
Wyg = Xq1* X153 + Xoq - X9 =0 0 0 00
13 11 M3 21 723 _2 _2. 0 0

atd... - -
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Priklad 1 (0 2 0 -2
* Vlybavovani— 1. iterace W = 2 0 0 -2
0 0 0 O

test=[-1 1 -1 -1] 2 2.0 0
Yi (k+1): f(ZWijyi (k)j J=1--n

y; = f(0-(-D)+2-1+0-(-D) +(-2)- (-1))=  (4)=1

y, = £(2-(=1)+0-1+0-(-1) +(-2)- (-1)) = £(0)=1

yg = f(0-(-1)+0-1+0-(-1)+0-(-1))= f(0)=1

Y, = F((-2)-(-) +(-2)-1+0-(-1) +0-(-1)) = f(0)=1
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Priklad 1 0 2 0 -2
* Vybavovani — 2. iterace W= 2 0 0 -2
O O O O
y=[1 1 1 1] 2 20 0
-1 (Ew) -
i=1

y; = £(0-1+2-1+0-1+(-2)-1)= f(0)=1
y, = £(2:1+0-1+0-1+(-2)-1)= f(0)=1
ys = f(0-1+0-1+0-1+0-1)= f(0)=1
Vs = F((-2)-1+(-2)-1+0-1+0-1) = f(~4) = -
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Priklad 1 0 2 0 -2

* \lybavovani — 3. iterace W= 2 0 0 -2

0 O 0 O

y=[1 11 -1 2 20 0
RIS R

y; = £(0-142-1+0-1+(-2) - (-1)) = f(4)=1

y, = £(2:140-1+0-1+ (-2) - (-1)) = f(4)=1
ys=f(0-1+0-1+0-1+0-(-1))= f(0)=1

V4= T((-2)1+(-2)-1+0-1+0-(-1)) = f(-4)=-1




Uceni Kohonenovy mapy

1.

2.

Inicializuj vahy neuronu malymi ndhodnymi ¢isly, definuj rychlostni konstantu «,
polomér topologického sousedstvi R.
Dokud neni splnéno kritérium pro zastaveni:

2.1 Pro kazdy vstup X =[X,X,,--- X, ]T , Z trénovacich dat
2.1.1 prokazdé j=1, ..., m spocti:

D(j) = >"(w; —x)

2.1.2 Najdi index J takovy, ze D(J) je minimalni.
2.1.3 Aktualizuj vahy vSech neuront, které jsou v topologickém sousedstvi
neuronu J vztahem:

w; (k +1) = w, (k) +a (% —w; (k)
2.2 Aktualizuj parametr rychlosti uceni a zmensi polomér topologického

sousedstvi R.
2.3 Otestuj podminku ukonceni.
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Vybavovani Kohonenovy mapy

* Jakmile je Kohonenova mapa spravné adaptovana, je mozné ji vyuzit ke
shlukové analyze:
* Predlozime-li siti vstupni vektor, soutézi jednotlivé neurony o to, ktery z nich je vstupu
nejblize.
* Tento neuron se pak aktivuje (vystup roven jedné), zatimco ostatni neurony zUstavaji
pasivni (vystup roven nule). Kazdy neuron tak reprezentuje urcitou mnoZinu vstupnich

dat, které jsou mu blizké.

* Algoritmus: Provstup x=[x,%,x,]",
pro kazdé j =1, ..., m spocti:

D(i)=>"(w; —x)

Najdi index J takovy, ze D(J) je minimalni.
Vystupem je Cislo aktivovaného neuronu J
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Dopredna vicevrstva

umela neuronova sit
(ANN/FFNN)
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Dopredna vicevrstva umela neuronova sit

* Je vhodna k feseni nasledujicich problému:
* Univerzalni aproximace
* Kodovani
* Predikce
* Rozpoznavani vzorl (klasifikace)

e Rozhodovani
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Dopredna vicevrstva umela neuronova sit

* Univerzalni aproximace
* Spojita funkce n proménnych muze byt vyjadrena pomoci konecného
souctu funkci jedné proménné.
* Libovolna spojita funkce muze byt s pozadovanou presnosti
aproximovana pomoci dopredné vicevrstvé umelé neuronové sité s
jednou skrytou vrstvou.

* Postup tvorby FFNN jako univerzalniho aproximatoru je experimentalni a
vychazi ze systematického postupu, kde provadime:
* Hleddani vhodné topologie sité.

* Optimalizace parametru rychlosti uceni a.
* Testovani.




Dopredna vicevrstva ume

* Modelovani a predikce

» Kazdy systém (pouziva se i termin proces, pripadné soustava) je mozno
zobrazit jako blok, na ktery plsobi vstupni signaly a pfipadné poruchy a
jehoz chovani je mozno sledovat na zaklade vystupnich velicin

e Systém vykazuje 2 typy chovani:

» Statické — zavislost mezi signaly v ustaleném tvaru — soustava algebraickych rovnic

* Dynamické — popisuje chovani systému v ¢ase (v prechodovém stavu) — soustava
diferencialnich/diferenénich rovnic

* Pomoci NN lze takovy systém modelovat nasledovné:
» Statické chovani — aproximace nelinedlni funkce

* Dynamické chovani — je zavisla nejen ne aktualnich stavech, ale také na stavech
predchozich = prevedeni modelu do diskrétniho tvaru a definice vstupnich a
vystupnich proménnych = tvorba trénovaci mnoZiny dle predpokladaného modelu

a heuronova sit




Topologie FFNN

» Sklada se ze vstupni vrstvy, skrytych vrstev a vystupnich vrstvev

* Vazby mezi neurony vedou pouze jednim smérem — dopredu.

\ .‘\\\ -xl- k k
WY, X5 Wor Woz -
(\ \\\‘! X = . Wk = k k
‘ . AMA : Wii1 Wiz
W : :
. | XR |
X y
[ V1] R — pocet vstupl
. Y2 Q — pocet vystupl
y=1: C — pocet skrytych vrstev
Yo k — pofadové Cislo vrstvy
Vstupni Prvni Posledni  Vystupni -
vrstva skryta skryta vrstva
vrstva vrstva




Stavebni blok FFNN

* FFNN je sloZzena z formalnich neuront zapojenych do vrstev.

=
< o TN - - T T T T T T T T ~
3 / \ / \\
01 — o |
5 2 | el |
N k-1 Loy k. bk
S o i . Yaj | Bz >
s 8 e o
| |
! yé"l ' T o oL, Vystup
2 =) | ' 1 Agregatni Aktivaéni |
| |
2 N : | : L funkce funkce | neuronu
(75} | |
> 2 ¢ \\ * /" \\ //'
z \__/ M sz e s op s e Swe o see snen s e o e g
@
< Vahy spojeni Télo neuronu
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Proces uceni FFNN

V1

\

X1
Xy X Dopitednd vicevrstva
X = . _’ w1 r r £
: uméla neukonova sit

XR

x — vektor vstupnich hodnot
y — vektor vystupnich hodnot (feseni) Adaptace vah a praht
t — vektor ocekavanych hodnot reseni

R — pocet vstupl
Q — pocet vystupl

Chyby u FFNN

e = zQ:(tk — Yi)?
] N

ZI'—‘
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Proces uceni FFNN

* ANN realizujici soucet a rozdil dvou vstupd.

Chyby u FFNN

Q
e= ) (t—30?
k=1

N
1
E=N26i
i=1

N — pocet vzoru
Q — pocet vystupl

X1 » ANN — )1
X2 » (UNS) — 2
Vzor |x; [xz (Y1 |Y2 |[L1=X11 X2 |2 =X1— X3
1. 2 5 6 2|7 -3
2. 3 2 6 3 |5 1
3. 7 5 11 2 |12 3

1
E=5Q2+5+2) =3




Optimalizace FFNN

* Optimalizace topologie (pocet vrstev, pocet neuronu v kazdé vrstvé,
volba aktivac¢ni funkce, ...)

e Optimalizace vah a prah( (u¢eni umélé neuronové sité)
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Uceni umeéelé neuronové site

* Cilem je optimalizace vah a praht pro zajisténi pozadované funkce UNS.

Topologie UNS je definovana.

Je tedy treba nastavit ,spravné” hodnoty vah a prahu.

Kvazi Newtonova metoda, Levenber(v-Marquardtdv algoritmus, ...

Algoritmus zpétného Siteni chyby (Backpropagation Gradient Descent)
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Algoritmus zpetného Sireni chyby (BGD)
* Topologie FFNN je dana — 2 vrstva FFNN (1 skryta + 1 vystupni)

Q — pocet vystupl
S — pocet neuronu ve skryté vrstvé

Hod. neuront ve skryté Z;

Hod. agregacni funkce oznaceny indexem in
Aktivacni funkce oznacena ¢

Plati: Ying = Z Wjk%j
j

Yk = (p(ymk)




hyby (BGD)

 Cilem uceni je minimalizovat chybu e = Zgﬂ(tk — v )% zménou vah a
praht jednotlivych neurond, tzn. Ze hleddame minimum e = f (v, w)

Algoritmus zpétného

e Cilem je najit vhodné
prirGstky vah tak, aby
bylo nalezeno minimum
-> nalezeni spadu funkce
(gradientu) -> derivace
chybové funkce

N

©
Qo
>
L
&

vV /7V

sirent

~ /"-

‘_\

ij = ij + AW]k

vjk = vjk + Avjk

Y
7

Parametr volnosti
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vV /7V /

Algoritmus zpétného Sireni chyby
. odvozeniAij @ vij >@ Wik =@—> Vi

Q
e= ) (t— 30’
k=1

de 8 N L9 L G -
Z(tk — ) = ij;(tk — d(Ving) )" = —2(t — Yk)mfp(}’ink) =

ow;,  Ow;
Ik k=1

= —2(tx — Y1)P' (Viny. )2z = —Okz
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vV /7V /

Algoritmus zpétného Sireni chyby
. Odvozenl'AUij @ vij >@ Wik =@—> Vi

Q

Q

de 9] 0

Q
)
= (tx — yi)? = =2 E (ti = Y 5=V = =2 E (tx — yk)qb’(yink)—a Ving =
k Vij =1 Vij

i

avij avij e

i
2 , G L S G
= — Z(tk —Yi)P ()’ink)ﬁ%nk =— Z O 35 Yink =~ Z SrWijk 354 =
lj 15} U
k=1 k=1

k=1

=1

Q
= - Z Sxwjr ' (Zinj) X; = —0; X;
=1
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vV /7V

Algoritmus zpétného Sireni chyby

» Graficky se chyba propaguje nasledujicim zplsobem
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Algoritmus zpétného Sireni chyby
* Potom
de
Awj = —a W = adyz;
de
Av;; = aavij=a8]x,

e Z principu algoritmu je treba, aby vSechny pouzité aktivacni funkce
byly derivovatelné (hladké, ¢asto linearni a sigmoidalni )

P(x) = =

l+e

* a se voli naintervalu (0; 1) metodou pokus-omyl 9'(x) = op(x)(1 - p(x))




Vhodné aktivacni funkce

* Vzhledem k aplikacim NN v nespojitém prostredi (digitalni svét)
jsou bézné uzivany numerické derivace (diferencovatelnost) a dalsi
metody priblizné definujici potrebné hodnoty

Linearni funkce Sigmoidaln{ funkce

Hyperbolicko—tangencidlni funkce




Celkovy postup algoritmu uceni

* Rozdéleni dat na testovaci, trénovaci a validacni mnozinu

* Nastaveni vah a prah( sité, nastaveni koeficientu uceni a

* Pro kazdou dvojici: vzor - oCekavany vystup,

Spocitani odezvy sité

Spocitani &, pro vSechny vystupni neurony
Spocitani §; pro neurony skryté vrstvy
Aktualizace vah a prah

Test ukonceni algoritmu
*  Maximalni pocet epoch
* Zména hodnoty ucelové funkce dale neklesa
* Dosazeno kapacity sité — vykon na validaéni mnoziné se zhorSuje = pretrénovani
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Podminka ukonceni

Prubéh E(s) pro trénovaci mnozinu
Prub¢h E(s) pro validaéni mnozinu

Vhodny okamzik pro ukonceni uceni

E(s)




Varianty uceni ANN

* Online
* Po kazdém vzoru dojde k aktualizaci hodnot vah a prah.

e Offline
* Zmény vah a prah( se scitaji v docasné proménné a jejich aktualizace se
provede az na konci epochy trénovani (po celé epose).
* Davkové (batch)

* Kombinuje pfedchozi varianty, kde se aktualizace provadi po davkach vzorku
(vétsSinou po 64, 32, 16, 8, 4 vzorech).

* Kombinuje vyhody a nevyhody obou variant (kompromis rychlosti a
pamétové narocnosti)




Heuristiky vylepsujici BGD

* \lybér varianty trénovani (online, offline, batch)

* Vhodny vybér dat trénovaci mnoziny
» Data zpUsobuijici velkou chybu
* Data rozdilna od predchozich

* Data normadlné rozlozena pres celou mnozinu a

* Vhodna volba aktivacni funkce * /r

* Vhodnd inicializace vah a prah{ neuront n
« Velké hodnoty > malé gradienty > pomald progrese = * ° = * ¢ T & o ¢ ¢

* Malé hodnoty 2 mozZnost dosazZeni sedlového bodu chybové funkce
* Snaha volit inicializacni hodnoty zplsobujici nejvétsi zmény (nelinearni oblasti)

* Normalizace dat




FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Heuristiky vylepsujici BGD

* Vhodny vybér dat trénovaci mnoziny pokryvajici dany problém kvuli

generalizaci
Trénovaci Trénovaci
A
Q
=
2
>
Generalizace
| 4

Vstup
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Optimalizace FFNN

* Optimalizace topologie (pocet vrstev, pocet neuronll v kazdé vrstvé,
volba aktivacni funkce, ...)

* Optimalizace vah a prah( (uceni umélé neuronové sité)
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Optimalizace topologie FFNN

* Neexistuje analyticky postup

Jedna skryta vrstva

e Pocet vstupl a vystupl je dan problémem

e Pocet skrytych vrstev

Rozhodovani

Aproximace funkce

Vice skrytych vrstev

ap




Optimalizace topologie FFNN

* Pocet neuronu ve skrytych vrstvach
* R0zna doporuceni v literature, ze zkuSenosti u 1 vrstvé ANN: D = 4 / RQ
* Metoda shora dolu
* Metoda zdola nahoru

1 T 1 T T
‘ — 101 i — 21
09/ : : — 04 0.9 —_— 31
— 8- — 41
08 21 1 08 P
07 61 || 07k —61||
51 i —_— 71
06 , § 4 0.6
w 05 w 05
P—
04 : 1 04 \
03 b T e
0.2 0.2 :
0.1 g s S : : . 0.1
| H
()] —_———— , ] oL = — E———— —~—————
0 1000 2000 3000 4000 5000 6000 7000 8000 S000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 S000 10000
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Priklad

* Teplotni Cidlo, které méri teplotu v rozsahu 0—500 °C

* Vystupem cidla je diskrétni Cislo v rozsahu 0— 1023

* Pomoci kalibrace chceme navrhnou ANN, ktera vystup cidla bude
transformovat (kddovat) na teplotu méreného objektu

5%

Teplotni
¢idlo

Lhsicrdini

hodnota E
- 1023

Neuronova
sit’

Teplota [
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Priklad

» Zisk trenovaci, testovaci a valida¢ni mnoziny

* Experiment (méreni) s etalonem

Udaj z éidla, Teplota dana
které kalibruji etalonem

N\

\\ Udaj z ¢idla | Teplota z etalonu
/ 0 0°C

\
\ 65 10°C
127 20°C
%\) 185 30°C
! - 239 40°C
.
.-g o
E | S

Teplota

EAEEERE

g

8

|
|
|
1

&

o

01002003(!)4005006&7&&)0%01600
Data z ¢idla
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Priklad

* Transformace (normalizace) dat

08
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Prik

ad

* Rozdéleni dat - zisk trénovaci, testovaci a validaéni mnoziny

0.8
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x"“‘d‘f'xxxx*
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0.2
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Priklad

 Jedna se spojity pribéh = uvazujme 1 skrytou vrstvu

e Trénovani pro rlizné topologie

’ =1 > Vice neZ 2 neurony ve skryté vrstvé
— 4| nevedou k razantnimu zlepseni
10" ot
Testovani: f
w 10° i
' 2 : : 02/ -
10° \‘:‘\l" | g °l | ! "
N : e ] 2f ‘ ' 8 |
N |
10* e 06/ i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

'0.% -3 1 |
8 06 04 02 o a2 04 06 [1F:]
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Priklad
* Pouziti sité

Transformace
‘ na <0; 500> ./

Neuronova sif

Transformace
na <-0.8; 0.8>

; # 7
Udaj z tidla

TR\
<
D,
I

Pfikon
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Metody uceni
neuronovych siti
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Uceni umeéelé neuronové site

* Cilem je optimalizace vah a praht pro zajisténi pozadované funkce UNS.

Topologie UNS je definovana.

Je tedy treba nastavit ,spravné” hodnoty vah a prahu.

Kvazi Newtonova metoda, Levenber(v-Marquardtdv algoritmus, ...

Algoritmus zpétného Siteni chyby (Backpropagation Gradient Descent)
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Algoritmus zpetného Sireni chyby (BGD)
* Topologie FFNN je dana — 2 vrstva FFNN (1 skryta + 1 vystupni)

Q — pocet vystupl
S — pocet neuronu ve skryté vrstvé

Hod. neuront ve skryté Z;

Hod. agregacni funkce oznaceny indexem in
Aktivacni funkce oznacena ¢

Plati: Ying = Z Wjk%j
j

Yk = (p(ymk)




hyby (BGD)

 Cilem uceni je minimalizovat chybu e = Zgﬂ(tk — v )% zménou vah a
praht jednotlivych neurond, tzn. Ze hleddame minimum e = f (v, w)

Algoritmus zpétného

e Cilem je najit vhodné
prirGstky vah tak, aby
bylo nalezeno minimum
-> nalezeni spadu funkce
(gradientu) -> derivace
chybové funkce

N

©
Qo
>
L
&

vV /7V

sirent

~ /"-

‘_\

ij = ij + AW]k

vjk = vjk + Avjk

Y
7

Parametr volnosti
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vV /7V /

Algoritmus zpétného Sireni chyby
. odvozeniAij @ vij >@ Wik =@—> Vi

Q
e= ) (t— 30’
k=1

de 8 N L9 L G -
Z(tk — ) = ij;(tk — d(Ving) )" = —2(t — Yk)mfp(}’ink) =

ow;,  Ow;
Ik k=1

= —2(tx — Y1)P' (Viny. )2z = —Okz
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vV /7V /

Algoritmus zpétného Sireni chyby
. Odvozenl'AUij @ vij >@ Wik =@—> Vi

Q

Q

de 9] 0

Q
)
= (tx — yi)? = =2 E (ti = Y 5=V = =2 E (tx — yk)qb’(yink)—a Ving =
k Vij =1 Vij

i

avij avij e

i
2 , G L S G
= — Z(tk —Yi)P ()’ink)ﬁ%nk =— Z O 35 Yink =~ Z SrWijk 354 =
lj 15} U
k=1 k=1

k=1

=1

Q
= - Z Sxwjr ' (Zinj) X; = —0; X;
=1
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vV /7V

Algoritmus zpétného Sireni chyby

» Graficky se chyba propaguje nasledujicim zplsobem
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Algoritmus zpétného Sireni chyby
* Potom
de
Awj = —a W = adyz;
de
Av;; = aavij=a8]x,

e Z principu algoritmu je treba, aby vSechny pouzité aktivacni funkce
byly derivovatelné (hladké, ¢asto linearni a sigmoidalni )

* a sevolinaintervalu (0; 1) metodou pokus-omyl = 1

l+e ™

9'(x) = op(x)(1-p(x))




Vhodné aktivacni funkce

* Vzhledem k aplikacim NN v nespojitém prostredi (digitalni svét)
jsou bézné uzivany numerické derivace (diferencovatelnost) a dalsi
metody priblizné definujici potrebné hodnoty

Linearni funkce Sigmoidaln{ funkce

Hyperbolicko—tangencidlni funkce




Celkovy postup algoritmu uceni

* Rozdéleni dat na testovaci, trénovaci a validacni mnozinu

* Nastaveni vah a prah( sité, nastaveni koeficientu uceni a

* Pro kazdou dvojici: vzor - oCekavany vystup,

Spocitani odezvy sité

Spocitani &, pro vSechny vystupni neurony
Spocitani §; pro neurony skryté vrstvy
Aktualizace vah a prah

Test ukonceni algoritmu
*  Maximalni pocet epoch
* Zména hodnoty ucelové funkce dale neklesa
* Dosazeno kapacity sité — vykon na validaéni mnoziné se zhorSuje = pretrénovani
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Uceni umeéelé neuronové site

e Kvazi Newtonova metoda

» ZaloZena na aproximaci Hessianovy matice bez nutnosti jejiho vypocétu nebo inverze.

* Metoda aktualizuje aproximaci Hessianovy matice (nebo jeji inverze) na zakladé
gradientu cilové funkce a rozdild mezi po sobé jdoucimi iteracemi.

* Pro aktualizaci se €asto pouziva Broyden-Fletcher-Goldfarb-Shanno (BFGS)

T T T

i S 2l S 8ES
ki1 (I N yi"ysk ) e (I N z];-s‘k ) y;sk
Lk 2k L °k L2k

kde plat:
* 5§, = Wy — Wy je rozdil parametrd mezi iteracemi.
* yr = VE(wis1) — VE(wy) je rozdil gradienta chybové funkce.

* [ je jednotkova matice.




Uceni umeéelé neuronové site

* Levenberuv-Marquardtlv algoritmus (LMA)
* Algoritmus kombinuje metody nejmensich ¢tvercl a gradientniho sestupu.
* Je zvlasté uziteCny pro problémy, kde je poCet méreni vétsi nez pocet neznamych.

* (typické pfi trénovani neuronovych siti s omezenym poctem parametr( a velkym
mnozstvim dat)

* LMA upravuje Jacobiho matici pfidanim diagonalni matice, ¢imz zvysuje jeji stabilitu a
usnadnuje inverzi.

* Tento pristup umoznuje algoritmu efektivné prechazet mezi smérem nejvétsiho poklesu
a kvadratickou konvergenci.
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Uceni umeéelé neuronové site

* Levenberuv-Marquardtlv algoritmus (LMA)
Pro iterativni aktualizaci vah se pouZiva vztah:
Wiy = wy, — [JTJT + M| T e
kde:
« J je Jacobiho matice (matice prvnich derivaci chybové funkce vzhledem k vaham).
« ejevektor chyb: e; = y; — f(zg, wy).

* ) je adaptivni parametr (regulator kroku), ktery uréuje miru ,pfiblizeni” bud’ ke gradientnimu

sestupu, nebo ke Gauss-Newtonové metodé:
* Pokud je A velké, metoda se podoba gradientnimu sestupu (menéi, ale stabilni kroky).

* Pokud je A malé, algoritmus se bliZzi Gauss-Newtonové metodé (rychla konvergence, ale mensi
stabilita).
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Uceni umeélé neuronové sité
 ADAM algoritmus (Adaptive Moment Estimation)

* Adaptivni optimalizacni metoda gradientniho sestupu, ktera se stala velmi popularni pro
trénovani hlubokych neuronovych siti.
* ADAM kombinuje dvé klicové techniky

* Momentum (setrvacnost) — Zahrnuje informace o predchozich gradientech k urychleni sestupu
a zabranéni oscilaci.

» Adaptivni uéeni — Dynamicky upravuje learning rate (rychlost uceni) pro kazdy parametr zvlast
na zdkladé historie gradientd.
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Uceni umeélé neuronové sité
 ADAM algoritmus (Adaptive Moment Estimation)

1. Vypoéet gradientu:

Spocitdme gradient chybové funkce vzhledem k vaham:
g = VuE(wy)
2. Aktualizace momentu:
» Aktualizujeme prvni moment (pramér gradienta):
my = Frmy-1 + (L — B1) gk
¢ Aktualizujeme druhy moment (pramér kvadratu gradienta):

ve = Bovp_1 + (1 — Bo)gi
3. Korekce vychyleni momenti (bias-correction): JelikoZ na zaéatku jsou momenty vychylené
(smérem k nule), pouZijeme korekci:

my
= — k?
1 1

— Uk
1Bk

Ve

g
4. Aktualizace parametri: Nové vahy jsou vypoéteny jako:

Ty
Wl = Wk — 7=
VUt €
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Uceni umeéelé neuronové site

* Kazda z metod ma své specifické vyuziti a optimalni pouziti zavisi na
konkrétnim problému a strukture dat.

* Kvazi-Newtonovy metody jsou vhodné pro problémy s malym az strednim
mnozZstvim parametru, kde je vypocet nebo aproximace Hessianovy matice

proveditelny.

* Levenberg-Marquardtlv algoritmus exceluje v problémech
transformovatelnych na optimalizaci pomoci nejmensich ¢tvercd.

e Zpétné sireni chyby je jednoduchym algoritmem, implementovatelnym pro
vétSinu neuronovych siti.
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Podminka ukonceni trénovani - pretrénovani

Prubéh E(s) pro trénovaci mnozinu
Prub¢h E(s) pro validaéni mnozinu

Vhodny okamzik pro ukonceni uceni

E(s)




Varianty uceni ANN

* Online
* Po kazdém vzoru dojde k aktualizaci hodnot vah a prah.

e Offline
* Zmény vah a prah( se scitaji v docasné proménné a jejich aktualizace se
provede az na konci epochy trénovani (po celé epose).
* Davkové (batch)

* Kombinuje pfedchozi varianty, kde se aktualizace provadi po davkach vzorku
(vétsSinou po 64, 32, 16, 8, 4 vzorech).

* Kombinuje vyhody a nevyhody obou variant (kompromis rychlosti a
pamétové narocnosti)
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Vypolty BGD s FFNN
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Vlypocet odezvy FFNN

* Odezvu FFNN lze pocitat obdobné jako u jednoduchého perceptronu s
tim rozdilem, ze se signal propaguje dal siti, takze se vypocCty postupné
provadi dokud neni dosazeno konkrétni vystupni hodnoty.
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Vlypocet odezvy FFNN
* Je patrné, ze:

—0,1 0,2]

wi=[08 03 w2=l0,4 03
’ ’ -0,4 0,8




Vlypocet odezvy FFNN

* Provzor x=0,25, pocteme odezvu nasledovné:

—0,1 02
wi=|%8 93wz | o4 03‘
~01 1,2 o o8
oy =y [ =[98 0] A < 08 08025 - [o7s
vi = (WOT-y° = WhT- [ ]= | 0,25] ~ 103+ 1,2-0,25] = [0,600
) L _ [0,649
y+ =tanhy; =

0,537 n
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Vlypocet odezvy FFNN

. _[08 03 ,
W= -0,1 1,2 w _[
2 _ w2y o1 _ [—0/1 04
Ya _(W) y 02
2 _ 2_[_0,0549
Yo =Ya =1 0,8246

-0,1 0,2

04 03

-04 08

04

|

0,649
1 _ 1 _ |Y
y* =tanhy,; = l0,537]

0,0549

0 649 0,8246

0,537

1
1
4
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Vypocet BGD pro FFNN

* Pro uceni je nejprve vypocitat odezvu FFNN, poté je treba urcit chybu a
0,45

—0,2

provézt vypocty a aktualizace vah. Pro vzor x=0,25, t =




Vypocet BGD pro FFNN

-0,1 0,2
ccoas =[98 wi=[08 03] we-|oa sl y-[00
o = [2] _ [:1 : yll _ [0%5 — £—0,0549)] _ [_0,5049
2 — Y2 0,2 —-0,8246 1,0246
e Derivace linearni identické funkce je 1, takze - \
512 = €1 ¢'(Y§1) =e;-1=e; =0,5049 : O y ;;“ :5_121:
85 = ey ¢'()’§z) = ey 1=e;=-10246 O\ )J i i !
|
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Vypocet BGD pro FFNN

2
« Derivace hyperbolicko-tangencialni funkce je: q)k’(y’;j) =1- q)k(y}‘) , takze

o' (y1,) = $1'(0,775) = 1 — 0,6492 = 0,5777
o' (y1,) = ¢1'(0,600) = 1 — 0,5372 = 0,7116

649

0,
tanh yg = [0 537




Vypocet BGD pro FFNN

2
* Derivace hyperbolicko-tangencialni funkce je: q)k’(y’;j) =1- (y}‘) , takZe

2
5t = ¢t (yl) Z 87 -wf =0,5777(0,5049 - 0,4 + (—1,0246) - 0,3) = —0,0609
lil

61 = ¢V (k) ) 87 - wh = —0,7270
=1




Vypocet BGD pro FFNN

* Lokalni gradienty jsou vypocitané, nyni lze pfistoupit k zpétnému Sifeni chyby

-0,1 0,2
wio[08 03 weo [ 0 0,3]
’ ’ -0,4 0,8
5{ = 0,5049; 67 = —1,0246
Aw3, = ad?y} =0,1-(0,5049) - 1 = 0,0505
1]
wi; = w3, + Awg, = —0,1 + 0,0505 = —0,0495 3 v oo
» . 0,4 :

Aw2, = ab?yi = 0,1-(0,5049) - 0,649 = 0,0328 . A '
|
|

N :
w? = w2 + Aw?, = 0,4 + 0,0328 = 0,4328 A




Vypocet BGD pro FFNN

* Lokalni gradienty jsou vypocitané, nyni lze pfistoupit k zpétnému Sifeni chyby

-0,1 0,2

wi=[08 03 w2=[0,4 0,3]

’ ’ -04 0,8
51 = —0,0609
53 =—0,7270

Awl, = adly? = 0,1-(—0,0609) - 1 = —0,0061

whi = why + Awd; = 0,8 — 0,0061 = 0,7939 o
Awi; = adiy; = 0,1-(-0,0609) - 0,25 = —0,0015 |
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Metody stanoveni
topologie FFNN
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Optimalizace FFNN

* Optimalizace topologie (pocet vrstev, pocet neuronll v kazdé vrstvé,
volba aktivacni funkce, ...)

* Optimalizace vah a prah( (uceni umélé neuronové sité)
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Optimalizace topologie FFNN

* Neexistuje analyticky postup

Jedna skryta vrstva

e Pocet vstupl a vystupl je dan problémem

e Pocet skrytych vrstev

Rozhodovani

Aproximace funkce

Vice skrytych vrstev

ap




Optimalizace topologie FFNN

* Pocet neuronu ve skrytych vrstvach
* R0zna doporuceni v literature, ze zkuSenosti u 1 vrstvé ANN: D = 4 / RQ
* Metoda shora dolu
* Metoda zdola nahoru

1 1

L1 1
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Re$eni problémd
pomoci FFNN




Dopredna vicevrstva umela neuronova sit

* Je vhodna k rfeseni urcitych typU problému:
* Aproximace / regrese

* Nahrazeni lokdlniho funkéniho predpisu funkce jeho pfibliznym vyjadrenim pomoci
funkce. Ucelem je sniZeni vypocetni ndrocnosti. Zjednoduseni probihd na ukor
presnosti.

* Libovolna spojita funkce muze byt s pozadovanou presnosti aproximovana pomoci
dopredné vicevrstvé umélé neuronové sitée.

* Modelovani a predikce

* Kazdy systém je mozno zobrazit jako blok (model), na ktery pUsobi vstupni signaly a
pripadné poruchy a jehoz chovani je mozno sledovat na zaklade vystupnich veli¢in

* Rozpozndvani vzor( a klasifikace
* Rozpozndvani vzor( a jejich tfidéni do prislusnych tfid.
* Rozhodovani
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/ / 7,/
a heuronova sit
I = e

Dopredna vicevrstva ume

Regrese

Binarni klasifikace

Klasifikace vice trid

Multilabel klasifikace

Klasifikace s
prahovanim

Redlné cislo (napf.
23.5)

Pravdépodobnost (0-1)

Vektor
pravdépodobnosti
(napft. [0.1,0.7,0.2])

Vektor nezavislych
pravdépodobnosti

Binarni hodnota (0
nebo 1)

1

1

n tfid

n labell

1 nebo n

Zadna (linedrni vystup)

Sigmoid

Softmax

Sigmoid (nezavisle)

Sigmoid + threshold
(napf. 0.5)

Predikovana hodnota

Prislusnost ke kladné
tridé

Rozdéleni
pravdépodobnosti,
soucet =1

P(ke kazdému labelu
zvlast), bez nutnosti
souctu

Rozhodnuti na zakladé
pravdépodobnosti (>
prah)




Experimenty s neuronovymi sitemi

e Stanoveni metodiky (stanoveni cile, predzpracovani dat, volba
topologie, kolik experimentd, jak budou testovany vysledky)

* Naméreni/ziskani datasetu (dat k trénovani, dat popisujici chovani,
které chceme modelovat, dat popisujicich skupiny, které chceme
shlukovat/rozdélovat) a jeho Uprava

* Jednotlivé experimenty s NN — vzdy provadét u¢eni minimalné z 10
riznych pocatecnich podminek pro vybér nejvhodnéjsiho modelu

* Pri hledani vhodné topologie daného typu NN se bézné pouzivaji
porovnavani vysledku na testovaci mnoziné
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Dopredna vicevrstva umela neuronova sit

* Modelovani a predikce — Priklad Soustava pro rizeni otacek
* Dynamiku je vhodné testovat na celém rozsahu (pres celou statickou charakteristiku)

1k — Vstup do systému |4
Vystup ze systému
1 1
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Dopredna vicevrstva umela neuronova sit

* Modelovani a predikce — Priklad Soustava pro rizeni otacek

3 T T T T T T T

- Tabulka 2: CAst naméfenych dat Tabulka 3: Cast trénovaci mnoziny
O Vstup do systému oooooooo(J k u(k), V. ys(k), V. u(k), norm yg(k), norm K Vstupy Cile
O Vistup ze systému o T 37521 0,010 0,5008 -0,9961 ush—1) ys(k—2) alk—1) u(k—2)| ys(k)
25k o N 2 37521 0,937 0,5008 -0,8125 3| -08125  -09961 05008  0,5008 | -0,5322
3 37521 2,338 0,5008 -0,5322 4| 05322  -08125 05008  0,5008 | -0,2959
0000000

o9° 0000~ 0 o 4 37521 35205 0,5008 -0,2959 5| -02059  -0,5322 05008 05008 | -0,1113
o o 2 z;ggi ‘517‘;‘81?; ggggg g(l);i 6 | -0,1113  -0,2959  0,5008  0,5008 | 0,0371
L . s ; ; : 7 0,0371  -0,1113  0,5008  0,5008 | 0,1387
2 ©0000000000C000 7 37521 56034 0,5008 0,1387 3 01387 00371 05008  0.5008 | 0.1943

8 3,7521 59717 0,5008 0,1943 ’ ’ ’ ’ ’
» , » b 9 0,1943 0,1387  0,5008  0,5008 | 0,2266

> Q00000000000 O o] 9 37521 6,328 0,5008 0,2266 ’ ’ ’ ’ ;

. 10 0,2266 0,1943 05008  0,5008 | 0,249
5 15f - 10 37531 6,2451 0,5008 0,249 1 0,240 02266 05008 05008 | 0,2578
2 11 37521 6,2801 0,5008 0,2578 ; ; g g g
s o 1o 3wl 6a1s 02008 02687 12 0,2578 0249 05008 05008 | 0,2637

13 3mal 698 05008 0.2686 13 0,2637  0,2578 05008  0,5008 | 0,2686
L i 114 37320 63574 05008 09715 14 0,2686 0,2637  0,5008  0,5008 | 0,2715
o 15 371521 63672 05008 0.2734 15 0,2715 0,2686  0,5008  0,5008 | 0,2734
o 16 50000 63867 1.0000 02739 16 0,2734 02715 05008 05008 | 0,2739
17 50000 65967 1,0000 0,3193 17 0,2739 0,2734 10,5008 | 0,3193
05k - : : : : : : : : : : :
o : : : : :
1000 1689 23438 -0,3244 -0,5313
o
0 ' Loem =2 -- 000000000 '
200 205 210 215 220 225 230 235 240
Cas, s
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* Modelovani a predikce — Priklad Soustava pro rizeni otacek

* Pro potreby identifikace Casto urCujeme rad modelu, poté provadime optimalizace
samotného poctu neuron(l ve skryté vrstvé

-3
10 ¢ . 107
L 1 #4,
F i eq
L T o+ +
- +
1= IR S
: I T+ + +
_ -+ + . | PEooes £
g 4 + . | @104 1 | + o4 %‘F +
L ] £ | S i+$+$
= 1 B I - F T T =
—%— 4? i | T T
| ! - Lo |
! i 1|
L|‘
T 1 [ ‘
: i 1 ! Lo
5 i 10 LL\LLLL
4 ! — 1
1. rad 2. rad 3. rad 4. rad 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neurony skryté vrstvy




Dopredna vicevrstva umela neuronova sit

* Modelovani a predikce — Priklad Soustava pro rizeni otacek
* Provedeme testovani a pfi splnéni pozadovaného chovani urcime NN model

> s T T . .
= | Vstup do systému | — Neuronovy model
) - en e - - e - en ey
S L d LY
- o—
2’3 0 1 1 1 1 1 " \‘
0 10 20 30 40 50 60 1 - []
Cas, s u(k) =T |
10 T T
pEEE=REEEERg Vystup ze systému e ! :
N o N P o 2 0 ]
> ystup z modelu ] Neuronové :
£ st | o o (k)
s, - si
= [ [
| |
----- : :
0 1 1 -~ ceSShY -
0 10 20 30 40 50 60 : :
* : :
s i 1
= \\ ’l
P% - \‘ ------------------- "
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Binarni klasifikace

* Priklad na detekci spamu
* Vstupni proménné

* VétSinou numerické reprezentace slov (napt. TF-IDF, word embedding, bag-of-words).

* Pocet vstupl mlze byt od desitek po tisice podle velikosti slovniku.

e Vystup:

* nespam vs. spam

* v praxi reprezentovano jednim neuronem se sigmoid aktivaci (1 = spam) nebo dvéma neurony se
softmax.
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Binarni klasifikace

* Priklad na detekci spamu
Skryté vrstvy

Predzpracovani

| /
e
|
Zpréva ——* Features A
L '

Pravdépodobnost
spamu/nespamu
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Binarni klasifikace

* Priklad na detekci spamu

Skryté vrstvy
Predzpracovani r D
:' '; """"" Pravdépodobnost
; . spamu )
| Zprava —— Features " Pravdépodobnost |
: \. nespamu )
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Klasifikace a rozpoznavani vzoru

 Priklad na klasifikaci kosatct - vyska/Sitka kaliSniho/okvétniho listku

Vyska kalisniho lisku
Sirka kaliniho lisku
Vyska okvétniho lisku 2y
nnnnnnnnnnn
Sitka okvétniho lisku
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Klasifikace a rozpoznavani vzoru

 Priklad na klasifikaci kosatct - vyska/Sitka kaliSniho/okvétniho listku

vyska/sitka

il
kali$niho/okvétniho 7 FENN &islo

listku

* Neslo by druh kosatce urcit [épe?

A 4

Funkce

Cislo rozhodnuti

Vystupni vrstva

* Pravdépodobnost prislusnosti k dané tridé — aktivacni funkce softmax
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Klasifikace a rozpoznavani vzoru

» Klasifikace obrazovych dat
* Primé zpracovani pomoci FFNN (pixel po pixelu)
» Uziti predzpracovani obrazu pro extrakci klicovych vlastnosti
* Detekce hran

* Extrakce vlastnosti pomoci histogram( orientovanych gradientt

* Vyuziti konvoluénich neuronovych siti
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Klasifikace a rozpoznavani vzoru

» Klasifikace obrazovych dat
* Primé zpracovani pomoci FFNN (pixel po pixelu)

pixel 1—

pixel 2—Qs - =~
pixel 3—{{@&2
pixel 4—Q

pixel 5—Q"

pixel 6—Q
pixel T— Q-
pixel 8— O -
pixel 9—'Qf
pixel 10— O
pixel 11—
pixel 12—C_
pixel 13— O
pixel 14—
pixel 15—
pixel 16— O

pixel 17—

pixel 18—

pixel 18—
K pixel 20—
pixel 784—J




Klasifikace a rozpoznavani vzoru

» Klasifikace obrazovych dat
* Primé zpracovani pomoci FFNN (pixel po pixelu)

* Topologie je vyuziva tzv. serializace vstupu, to znamen3, Ze ze vstupni obrazové matice
pospojuje jednotlivé radky nebo sloupce do jednoho vektoru.

* Vnitrni topologie odpovida standardni vicevrstvé neuronové siti a vystupni vrstva
obsahuje pocet neuronl odpovidajici poctu klasifikaénich ttid




Klasifikace a rozpoznavani vzoru

» Uziti predzpracovani obrazu pro extrakci klicovych vlastnosti

* Motivace — ¢lovék je instinktivné schopen urcit dulezitou ¢ast obrazu
(oddélit pozadi od sledovaného objektu), stroj sam o sobé nedisponuje
takovou schopnosti — je potrfeba mu klicové informace ,,zvyraznit”
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Klasifikace a rozpoznavani vzoru

e Detekce hran — gradient

* Prakticky je defini¢ni obor jasové funkce diskrétni, gradient
vypocitame pomoci diferenci jasové funkce

« Castou jsou implementovany tzv. masky zvyrazfujici pfechody
(hrany)

* Roberts, Prewitt, Sobel, ...
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Klasifikace a rozpoznavani vzoru

* Po vynasobeni masky skrze obrazek dochazi obecné k filtraci, v
pripadé vhodnych masek pak k zvyraznéni urcitych vlastnosti
(typicky hran)

~
2 || ;|
=1
o
e -




Klasifikace a rozpoznavani vzoru

* PY. Originalni a zaSumeény obrazek
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Klasifikace a rozpoznavani vzoru
* PY. Box filtr




Klasifikace a rozpoznavani vzoru

* Pr. Gausuv filtr — béZzné je pouzita mat. funkce ndsobici kazdy
pixel, nicméné se da aproximovat do podoby masky
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Klasifikace a rozpoznavani vzoru

* Pf. Matice pro Prewittuv a Sobelllv operdtor a Laplacian

R NEH,
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Klasifikace a rozpoznavani vzoru

* Priklad aplikace Robetsova operatoru

Obraz ziskany Robertsovym
Vstupni obraz operatoru

Obraz se
zanedbatelnym Sumem

alnim

braz postizeny aditivnim
Sumem s norma
rozdélenim
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Klasifikace a rozpoznavani vzoru

* Pomoci metod detekce hran, lze pouzit pfimo detekované
hrany nebo vstupni obrazova data upravit a pouzit takto vzniklé
obrazky obdobné jako pri klasifikaci s FFNN
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Klasifikace a rozpoznavani vzoru

* Extrakce vlastnosti pomoci histogramu orientovanych gradientu
e Zobecnéni detekce hran

* Tvar a vzhled objektu je mozné charakterizovat pomoci gradientu
jasové funkce

* Vysledkem je informace o dominantnich tvarech v obrazu

Vyppcet HOGs Kvlllcove
gradientu priznaky

A 4

A 4
A 4

Data

A 4

Predzpracovani
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Extrakce vlastnosti pomoci HOGs

A

Vyppcet HOGs . Kvlllcove
gradientu priznaky

100 x 200

Original Image : 720 x 475




Extrakce vlastnosti pomoci HOGs

Klicové
priznaky

HOGs

A 4

Data Predzpracovani

A 4
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Extrakce vlastnosti pomoci HOGs

Data

Predzpracovani

. | | | [ | ||
=--F

Vypocet
gradientu

Klicové
priznaky

2 3 4 4 3 4 2 2
5 11 17 13 7 9 3 4
1 21 23 27 22 17 4 6
23 99 165 135 85 32 26 2
91 155 133 136 144 152 57 28
98 196 76 38 26 60 170 51
165 60 60 27 77 85 43 136

71 13 34 23 108 27 48 110

Gradient Magnitude

80 36 5 10 0 64 90 73
37 9 9 179 78 27 169 166
87 136 173 39 102 163 152 176
76 13 1 168 159 22 125 143
120 70 14 150 145 144 145 143
58 86 119 98 100 101 133 113
30 65 157 75 78 165 145 124
11 170 91 4 110 17 133 110

Gradient Direction




Extrakce vlastnosti pomoci HOGs

Vypocet

Data »| Predzpracovani > .
gradientu
3350549073 :?3“@3"22
37 9 9 179 78 27 169 166 PN e 79 84 ., ,
&7 198 173 35 100 165 152 178 AN Vektor kli¢ovych vlastnosti
. . L, o 76 13 1 168159 22 125 143 ;2?',99‘65‘35353225 2
Magnitudy jednotlivych pixel(i 120 70 14 150 145 144 145 143 L7 Tt 155 13 136 104 12 57 28
pfifazuji s danou vahou do 58 86 119 98 100 101 133 113 ’,:,’; 9196 76 38 26 60 170 51
1
pfisluénych skupin dhlii gradientu | * %' 7 e g o RS S T S
11170 81 4 110 17 133 116 | » ] 71 13 34 23 108 27 48 110
Gradient Directior” ,’ 1 Gradient Magnitude
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Histogram of Gradients




Extrakce vlastnosti pomoci HOGs

Vypocet
gradientu

Klicové
priznaky

A 4

Data » Predzpracovani

2 3 4 4 3 4 2 2
5 1117 13 7 9 3 4
1 21 23 27 22 17 4 6

23 99 165 135 85 32 26 2
91 155 133 136 144 152 57 28
98 196 76 38 26 60 170 51
165 60 60 27 77 85 43 136
71 13 34 23 108 27 48 110
Gradient Magnitude

80 36 5 10 0 64 90 73
37 9 9 179 78 27 169 166
87 136 173 39 102 163 152 176
76 13 1 168 159 22 125 143
120 70 14 150 145 144 145 143
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|

i

J!
|

k
-] - |

58 86 119 98 100 101 133 113

30 65 157 75 78 165 145 124

11 170 91 4 110 17 133 110
Gradient Direction
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Metriky pro hodnoceni
neuronovych siti
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Metriky pro hodnoceni neuronovych siti

* Klicové je rozdéleni datasetu — metriky se hodnoti nad testovacimi daty

Jednotlivé metody je potrfeba vidy porovnavat na stejné testovaci mnoziné

v v v

* Rozdéleni je bézné 70:15:15 (trénovani:validace:testovani)

* Vyhodnoceni modelu se vidy provadi pouze nad testovacim datasetem

evVv/s
[ ]

neni model preucen, tak s nizsi chybou bude lépe performovat i na testovaci sadé




Metriky pro hodnoceni neuronovych siti

* Podle reseného problému se aplikuji metriky pro hodnoceni
neuronovych siti.

* Metriky souvisejici s regresi a modelovanim:

* Jejich pouziti je jednoduché. Na testovaci mnoziné se aplikuje konkrétni
metrika, ktera urcuje presnost modelu.

» Stredni kvadraticka chyba

* Nejoblibenéjsi metrikou pouZivanou pro regresni problémy. V podstaté zjistuje
pramérnou kvadratickou chybu mezi predpovidanou a skutec¢nou hodnotou.

e Stredni absolutni chyba
 Zjistuje prdmérnou absolutni vzdalenost mezi predpovidanou a cilovou hodnotou.

N N
1 .12 1
MeanSquaredError = — E (yj — u)) Mean Absolute Error = ¥ E ly; — 95l
N~
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Metriky pro hodnoceni neuronovych siti

* Podle reseného problému se aplikuji metriky pro hodnoceni
neuronovych siti.

* Metriky souvisejici s klasifikaci:

» Klasifikace je jednim z nejpouzivanéjsich probléma strojového uceni s
rdznymi pramyslovymi aplikacemi, od rozfazovani do skupin podle
vlastnosti, rozpoznavani oblicejll, kategorizace videi (napt. na YouTube),
moderovani obsahu, |ékarské diagnostiky az po klasifikaci textu (detekci
nendvistnych projevl na Twitteru).

 Klasifikacni metriky pouzivaji zakladni hodnoceni, zda predikce odpovida
prislusnosti do dané tfidy nebo nikoli.

* Jsou rozliSovdna 4 hodnoceni: TP, FP, FN, TN




Metriky pro hodnoceni neuronovych siti

* Jsou rozliSovana 4 hodnoceni: TP, FP, FN, TN
* TP —True Positive
* Predikovana tfida je shodna s tfidou daného vzorku testovaci mnoziny.
* FP — False Positive
* Byla pfifazena trida, kterda ovSem neméla byt prifazena.
* FN — False Negative
* Nebyla pfifazena tfida, ktera méla byt prirazena.
* TN —True Negative
* Znadi vyskyty ostatnich trid, které spravné nebyly detekovany.




Metriky pro hodnoceni neuronovych siti

* Jsou rozliSovana 4 hodnoceni: TP, FP, FN, TN — Graficky pomoci tzv.
confusion matrix (matice zamén).

Predikovana trida

Ano Ne
Ano TP FN

Redlna trida
Ne FP TN




Metriky pro hodnoceni neuronovych siti

Predicted Class
il =%
Positive Negative
[ T
. . False Negative (FN) penatt iy
Positive True Positive (TP) - aE TP
ype Irror m
Actual Class
‘< Specificity
g False Positive (FP) ;
Negative Siaata True Negative (TN) TN
. N+ FP)
e
o Negative Predictive Accuracy
re:':m“ Value TP +TN
e ™ (TP +TN + FP + FN)
(TP + FP) S
(TN + FN)
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Vypolty BGD s FFNN
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Vypoc&ty BGD s FFNN

* Méjme takto definovanou sit, kterou chceme naudit odcitani vstup(i
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Vypoc&ty BGD s FFNN

* Méjme takto definovanou sit, kterou chceme naudit odcitani vstup(i

0,1 0,05
w1=[0,5 _03] Wi = [ ]

~0,4

X1
xp=1 y t=205
Xy = 0,5

X2

y = tanhy, Y=DYa
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Vypoc&ty BGD s FFNN

* Méjme takto definovanou sit, kterou chceme naudit odcitani vstup(i

0,1 0,05
w1=[0,5 _04] Wi = [ ]

-0,3

X1
x =1 y t=0,5
Xy = 0,5

X2

y = tanhy, Y=DYa

2z, =01+05 x —03-x, = 0,45;a, = tanh(0,45) = 0,421
z,=02-04-x; +08-x; =0,2; a, = tanh(0,2) = 0,197
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Vypoc&ty BGD s FFNN

* Méjme takto definovanou sit, kterou chceme naudit odcitani vstup(i

0,1 0,2 0,05
w1=[0,5 _0,4] Wi = [ ]

-0,3 0,8

X1
x =1 y t=0,5
Xy = 0,5

X2

y = tanhy, Y=DYa

2,=0,1+05-x —03-x, = 0,45;a; = tanh(0,45) = 0,421
2,=02—04-x +08-x, =0,2;a, = tanh(0,2) = 0,197

y=10,05+07-a, —0,6-a, =0227
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Vypoc&ty BGD s FFNN

* Méjme takto definovanou sit, kterou chceme naudit odcitani vstup(i

* UvaZujme kvadratickou chybu 01 02 0 05
wl=]05 -04 W2 =
1
o Eme . 1 —03 0,8
3y =7 A= D=yt
X1
xn=1 y t=0,5
x, =05
2 OF

—=0,227-05=-0,273
ay

y = tanhy, Y=DYa

2,=0,1+05-x —03-x, = 0,45;a; = tanh(0,45) = 0,421
2,=02—04-x +08-x, =0,2;a, = tanh(0,2) = 0,197

y=10,05+07-a, —0,6-a, =0227
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Vypoc&ty BGD s FFNN

* Méjme takto definovanou sit, kterou chceme naudit odcitani vstup(i

 Gradient pro vystupni vahy 01 02 0 05
wl=]|05 -04 W2 =
9E _0E 1 1 -0,3 0,8
ow? o9y *

OE

— =-0,273-1 _. M
ow3 le__O?S y t=05
0E 2
2% = 0,273 0,421 = —0,115 OE
1 = - ==
yowmhy,  yev. gy = 0227 05=-0273
;’—EZ = —0,273- 0,197 = —0,054
w3 z; = 0,45; a; = tanh(0,45) = 0,421 y =0,227

z, = 0,2; a, = tanh(0,2) = 0,197
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Vypoc&ty BGD s FFNN

* Méjme takto definovanou sit, kterou chceme naudit odcitani vstup(i

 Gradient pro vahy skryté vrstvy 01 02 0 05
wl=]|05 -04 W2 =

9E _9E 2.4 1 1 -0,3 0,8
om oy Wi Z tanh(2)
itanh(z) = 1 — tanh?(2) X1
dz x):1==015 y £=05

X2

0,823 oF 0,227 - 0,5 0,273
:—E — _0273-0,7-(1—0421%) = —0,157 ~ = @Y y=Ya 9y ' '
6 . . 2y — z, = 0,45; a; = tanh(0,45) = 0,421 B
T = -0,273--0,6 - (1 —0,1974) = 0,157 Z; 02 a;: tanh(0.2) = 0,197 y = 0,227
0,961
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Vypoc&ty BGD s FFNN

* Méjme takto definovanou sit, kterou chceme naudit odcitani vstup(i

. i 4 4 0,1 0,2 0,05
Gradient pro vahy skryté vrstvy Wi [ ] e [ ]

05 -04
oOF _9F . 1 1 -03 08
6W1 aZl' l

ij

= —0,157 y t=05
owg,
0FE
0E — = —_ = —
awl, = —0,157 - X1 = -0,157 y = tanhy, Y =Yaq ay 0’227 0'5 01273
0F _ _ v — z; = 0,45;a; = tanh(0,45) = 0,421 B
owl, = 0157 x, = —0,0785 2, = 0,2 ap = tanh(0,2) = 0,197 y = 0,227
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Vypoc&ty BGD s FFNN

* Méjme takto definovanou sit, kterou chceme naudit odcitani vstup(i

* \lypoctené gradienty vah se pak pri¢tou vynasobené koef. Rychlosti
uceni k plvodnim vaham

01 02 0,05
w!l = [ 0,5 —0,4] wW2= [ 0,7 ]

—0,6

-0,3 0,8
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Implementace
FFNN v pyTorch
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Uvod do PyTorch

* Instalace pres pip (pip install torch)
* https://pytorch.org/docs/stable/nn.html

* PyTorch —tensor
e torch.Tensor = zakladni datova struktura
* Podobné jako NumPy pole, ale mUze bézet na GPU



https://pytorch.org/docs/stable/nn.html
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Tvorba modelu

* nn.Module
» Zakladni tfida vSech modell v PyTorch

e Obsahuje

* konstruktor __init__ () — kde se definuji vrstvy
* metodu forward() — definuje vypocetni tok (tzv. forward pass)

torch
torch.nn as nn

MLP(nn.Module):
__init__(self):

super().__init_ ()

self.fcl = nn.Linear( )

self.relu = nn.ReLU()
self.fc2 = nn.Linear( )

forward(self, x):
x = self.relu(self.fc1(x))
self.fc2(x)
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Tvorba modelu

* Vice vrstev - schopnost modelovat slozitéjsi nelinearity

» Aktivace umoznuji nelinearni transformace - bez nich by sit byla jen
linearni mapa

* RelU - rychla, standardni volba (vétSina modernich siti)

* Tanh — symetrickd, pouZziva se méné Casto

* Sigmoid — u binarni klasifikace

DeepMLP(nn.Module):
(self):
()- ()

.net = nn.Sequential(
nn.Linear( )
nn.Tanh()
nn.Linear( )
nn.ReLU()
nn.Linear( )

)

forward( X):
.net(x)
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Tvorba modelu

* Regularizace
* Dropout: nahodné vypina nékteré neurony béhem tréninku = zabranuje preuceni
* BatchNorm: stabilizuje vystupy z vrstev = urychluje trénink, snizuje kolisani

RegularizedMLP(nn.Module):
(self):
(). ()

.model = nn.Sequential(
nn.Linear( )
nn.BatchNorm1d(64)
nn.RelLU()
nn.Dropout(0.3)
nn.Linear( )

)

forward( X):
.model(x)
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Datasety

* TensorDataset: jednoduchy obal nad (x, y)

* Pouzivame, pokud mame data v NumPy nebo pandas

sklearn.datasets load_iris
torch.utils.data TensorDataset

iris = load_iris()
X = torch.tensor(iris.data =torch.float32)
y = torch.tensor(iris.target =torch.long)

dataset = TensorDataset(X, y)
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Datasety

* Déleni dat:
* random_split(dataset, [train, val]) — ndhodné rozdéli

torch.utils.data random_split

train_ds, val_ds = random_split(dataset, [

v

e Subset + indexy — umozni presnéjsi déleni (napf. stratifikaci)

sklearn.model_selection train_test_split
torch.utils.data Subset

idx_train, idx_val = train_test_split( (len(dataset))
train_ds = Subset(dataset, idx_train)
val_ds = Subset(dataset, idx_val)
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Datasety

* Dataloader(dataset, batch_size, shuffle, num_workers)

e Vytvari davky a iteruje pres né

torch.utils.data DatalLoader

train_loader = DatalLoader(train_ds
val_loader = DatalLoader(val_ds

* batch_size — kolik vzorkd v jednom kroku
* shuffle=True — promicha data mezi epocha
* minum_workers — paralelni nacitani (funguje mimo Windows)
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Konvolucni neuronova sit
(CNN)
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Problémy zpracovani obrazu

» Klasifikace — zarazeni vstupniho obrazku do pfrislusné tridy
* Lokalizace — nalezeni objektu ve vstupnim obrazku
* Detekce — soubézna lokalizace a klasifikace

* Segmentace — rozdéleni vstupniho obrazku na segmenty
* Sémanticka — kazdy pixel je prifazen do urcité tridy

* |Instanéni— oznacuje pixely odpovidajici jednotlivym instancim objektu
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Problémy zpracovani obrazu

» Klasifikace — zarazeni vstupniho obrazku do pfrislusné tridy
* Lokalizace — nalezeni objektu ve vstupnim obrazku
* Detekce — soubézna lokalizace a klasifikace

* Segmentace — rozdéleni vstupniho obrazku na segmenty

CAT, DOG, DUCK  CAT, DOG, DUCK
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Konvolucni neuronova sit — myslenka
* Typicky Clovék vybira v datech specifické priznaky — hrany, tvary, barvy

V datech se obecné nachazeji vzory (vlastnosti) definujici dané objekty

Tyto vzory mohou byt rliznych velikosti a rlizné umisténé v datech

— navrh skupiny detektord, které prochdzeji zpracovavana data

Jednotlivé ¢asti dat mohou byt kddovany stejnym detektorem
(stejnym zpusobem)
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Konvolucni neuronova sit — myslenka
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Konvolucni neuronova sit — konvoluce

e 1 konvoluéni vrstva je tvorena definovanym poctem filtrd, které
detekuji vzory definované velikosti (velikost jadra), vahy filtrd jsou
ziskany trénovanim.

1-1]-1
1lolololo]1 Filr1(3x3) | -1] 1 | -1
ol1]lolol1]o0 1]-1]1

Obrdzek | O | 0| 1|10 O0 - .

> T1lololol1]o - -
1]1 -1
0j1]0j0)1]09 Filtr n (3x3) 111 1-1
olol1lol1]o0 RERE
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Konvolucni neuronova sit — konvoluce

* Pro kazdy pixel aplikujeme skalarni soucin konvolucniho filtru s
vstupem a ziskdvame vystupni hodnotu tvorici matici pfiznak

v
px[0; 0] =1*1+0*1+..+0*1+1*1=3

100|001 J l t \\l
o|1]0]0|1]0 3
olo[1]1]0]0 1|1
1lofolo]1]o0 N ERE!
ol1][0]0]1]0 1(-1]1
O|0|l1]|]01]0O0 Filtr 1 (3x3)




Konvolucni neuronova sit — konvoluce

* Pro kazdy pixel aplikujeme skalarni soucin konvolucniho filtru s
vstupem a ziskdvame vystupni hodnotu tvorici matici pfiznak

Stride = 1 (po kolika pixelech brat dalsi blok)
11]0|]0(0]0]1

oj1(0(0]1]0 31-1
ojof1(11]0]0 1(-1/-1
1({0(0(0|1]0 111 (-1
O|1|0|0]|]1]|0O0 -1]-1]1
O(0|l1]0(1]0O0 Filtr 1 (3x3)




Konvolucni neuronova sit — konvoluce

* Pro kazdy pixel aplikujeme skalarni soucin konvolucniho filtru s
vstupem a ziskdvame vystupni hodnotu tvorici matici pfiznak

Stride = 1 (po kolika pixelech brat dalsi blok)
1{0j0(0]|]0]}1

oO|1(0(0]1]0 31-1(-3
O|0l1(1]0]0 1(-1/-1
1({0(0(0|1]0 111 (-1
O|1|0|0]|]1]|0O0 -1]-1]1
O(0|l1]0(1]0O0 Filtr 1 (3x3)




Konvolucni neuronova sit — konvoluce

* Pro kazdy pixel aplikujeme skalarni soucin konvolucniho filtru s
vstupem a ziskdvame vystupni hodnotu tvorici matici pfiznak

1/0|0]0|0]|1

oO|1(0(0]1]0 3(1-1]-3|-1
O|0f(1(1]0]0 11-1]-1 3(1(0]-3
1({0(0|0|1]0 111 (-1 3(-310]|1
O|1|0|0]1]|0O0 -1(-1(1 3(-21-2]-1
O([0|1)J0(1]0O0 Filtr 1 (3x3)
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Konvolucni neuronova sit — konvoluce

* Matice priznakl uréuje, kde se v plvodnim obrazku vyskytuji
dominantni priznaky shodné s témi ve filtru

e Urcuje, kde v obrazku jsou pritomné dané tvary

Matice pfiznak( — filtr 1

0 0|0]1
0o|1]0 (31|31
1(0/o0 1|1 31|03
0|10 1 1 33|01
0|10 11 (3)|-2|-2|1

0 0O|l1]0 Filtr 1 (3x3)
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Konvolucni neuronova sit — konvoluce

* Matice priznakl uréuje, kde se v plvodnim obrazku vyskytuji
dominantni priznaky shodné s témi ve filtru

e Urcuje, kde v obrazku jsou pritomné dané tvary

1|10|0|]0|0]|1 Matice pfiznakd — filtr n
ol1]0]0 0 1]lalala
olofl1|1]0]0 111 1lal2]1
110100 0 111 (-1 1121
ol1/0]o0 0 111 1]0[-4|(3)
O|0|1]O0 0 Filtr n (3x3)




Konvolucni neuronova sit — konvoluce

» Aplikaci vsech filtri pak dochazi k zisku mapy priznak

Mapa priznak
jednotlivé matice

110]0]0]0 1 Filtr 1 (3x3) pfiznaku za sebou
0|1|]0|]0]|1 |0 — T —T —

Obrazek | 0|0 |1[1|0|0 . | -1-17-1)-1
" T1lololo]1]o ' 1]-1]-2]1
oj1j0jo0 ;170 Filtr n (3x3) i -ij-1)-2) 1
0/|0|1|]0]|1 |0 1-1]101]-4]3




Konvolucni neuronova sit — konvoluce

* Padding (vyplriovani) vs. Normalné — dochazi ke snizeni velikosti

Obrazek 6x6

110|000 1 Matice pFiznak( 4x4

Filtr 1 (3x3)
o(1/0|0]1]|0 3
ojlo|l1|1]l0]0 el

D [-1|1]|-1]

11010010

-11-1(1
0|10 0]1]0
o(ofj1|j]0|1/|0




Konvolucni neuronova sit — konvoluce

* Padding = Same — Zachovani velikosti obrazu

Obrazek 6x6 + vypln (celkem 8x8)

Matice pfiznakl 6x6

1jojojojoj1 Filtr 1 (3x3)
oli1|{o|o|1]0 111 3
olo|1|1]|0]0 1114
1{olofo|1]o0 11
oli1|{o|o|1]0

olo|1|o0|1]0
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Konvolucni neuronova sit — konvoluce

e U barevného obrazku (RGB) se provadi pro kazdy kanal

e Ziskem jsou mapy priznakl (dominantnich vlastnosti vstupnich dat)
Obrazek 6x6x3 (RGB)

Mapa ptiznak(i 6x6x3

Filtr 1 (3x3)
1]-11-1
Al 1]-1]|

-11-111




FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Konvolucnhi neuronova sit — motivace

* Konvolucni vrstva ,sama“ extrahuje klicové vlastnosti
e Konvolucni vs. plné propojena vrstva

1011
-1_11>L3 1]-3]-1 2 (o)1
1
0
0
0
0
0

O | O |+ jJO|O| K
O |+ |OJO || O
=, | OO}k |O| O
[ = = K= = N

O |O0O|O |, | O\ O
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Konvolucnhi neuronova sit — motivace

e Konvolucni vrstva neni plné propojena (neuron ve skryté vrstvé —
priznak je definovan poctem vah odpovidajici velikosti filtru)

» Dale dochazi ke sdileni vah — jesSté méné parametr(

* FFNN a CNN se stejnym poctem neuronl ma méné vah k ucéeni

1
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CNN — Klasifikace




Konvolucni neuronova sit — struktura

* CNN je obecné slozena z konvolucnich, pooling, flatten, a dense (plné
propojenych) vrstev

Fully

Convolution Connected

Pooling_'d,..a-"'"‘_

[

¥ []
i i
Cd o £y 4 By N
o (LT i -
§a t [ Pa et
W 1% i . LR ] ey
%

o

%

\ AN )
\ Y

Feature Extraction Classification




Konvolucni neuronova sit — struktura

* Pooling vrstvy sjednocuji skupinu vlastnosti a vybiraji jen tu nejvice
dominantni — max pooling vybira maximalni hodnotu, snizuji velikost

224x224x64
112x112x64
pool g
- = i 30 | O
R 2 0 2 x 2 Max-Pool | 20 | 30
1 34 [ 70 | 37 | 4 2l 37
NN 25 | 12
> 112 .
224 downsampling !
112
224
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Konvolucni neuronova sit — topologie

» Jednotlivé CNN se skladaji z pard Conv + MaxPooling

\ 4
FFNN

Vystupni

Vstupni
Conv
!
Max Pooling
Conv
v
Max Pooling
A 4
Flatten

* Samotnych topologii CNN je velké mnozstvi a navrh samotné
topologie je jiz znacné komplexni

* Béznou inzenyrskou praktikou je vybér z jiz existujicich topologii
vhodnych pro feseni daného problému
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Konvolucni neuronova sit — topologie

» Jednotlivé CNN se skladaji z pard Conv + MaxPooling

Low-Level| |Mid-Level| [High-Level Trainable
—_— —_ _—
Feature Feature Feature Classifier
P »
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Konvolucni neuronova sit — vyhodnoceni

* Kvyhodnoceni klasifikacnich uloh se pouziva Confusion Matrix
(Matice zdmén)

Actual Values

Positive {1) Negative (0)

Positive (1) TP FP

Predicted VYalues

MNegative (0) FN TN
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KonvolucCni neuronova sit — historie
e 1959 - Simple and Complex Cells - David Hubel and Torsten Wiesel

e Zkoumali lidské zrakovém ustroji a navrhli, Ze existuji urcité druhy
bunék, které clovék vyuziva pri rozpoznavani vzord.

* Simple cell (S-Burika) reaguje na hrany a pruhy urcité orientace v
daném perceptivnim poli.

 Complex cell (C-Bunka) také reaguje na hrany a pruhy urcité
orientace, ale od jednoduché bunky se lisi tim, ze tyto hrany a pruhy
mohou byt na scéné posunuty a burika bude stale reagovat.



https://en.wikipedia.org/wiki/David_H._Hubel
https://en.wikipedia.org/wiki/Torsten_Wiesel
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Konvolucni neuronova sit — historie

e 1980 - Neocognitron - Kunihiko Fukushima

* Neocognitron: A Self-organizing Neural Network Model for a Mechanism of
Pattern Recognition Unaffected by Shift in Position.

* Model zahrnuje komponenty Ug,  Yer Usz y, U33Uc3
oznacované jako S-buriky a C- /’ A Usa
buriky realizujici matematické y [ ﬁ\ P Ves
operace. 27V g HEN i
* Celkovou myslenkou je zachytit @ ! _ i E i : i '
koncept "od jednoduchého ke ‘6 NI AHI A
sloZitému" a pfeménit jej na | Y %’ A kil rored commedtions
vypocetni model pro _ / 7 . = spatial filtering
rozpoznavani vizudlnich vzoru. pg‘{t’;‘,‘,, I 4 1 I (_= convolution
extacton  Pooling  recognition
(S-cells) (C-cells) (classification)



https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf
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Konvolucni neuronova sit — historie

e 1980 - Neocognitron - Kunihiko Fukushima

f————— visual area *k-association area —
_ Us, Ue, Use
retina — LGB —»simple — comp'lex —- m;gnd;;-» m:oi:l::* ? __‘_grocnerilln'l?uther i I %%%E %%%%
5 o ' L O000 .. (o000
S P I . ) I
Uo :_>U51 >Uey 7P Us; >Ue, 7P Us3 >Uey— 1 |
_______ IV R S T S OG0 Eddd
—b medifiable synapses : Yz l
—> unmodifiable synapses %’DJD %%%%
Up =
7 Bl
r |- - BeEE
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Konvolucni neuronova sit — historie
e 1998 - LeNet - Yann LeCun

* Gradient-Based Learning Applied to Document Recognition

Image Maps
Input

Convolutions
Subsampling



http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
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Konvolucni neuronova sit — historie
e 2009 — IMAGENET — Fei-Fei Li & Team

* Prvni rozsahly dataset (1000 tfid; 1,3 milionu obrazkd) vyzivajici k soutézeni v
klasifikaci obrazovych dat mezi vyzkumniky

* Diky soutézeni vznikaji navrhy novych topologii klicovych pro rozvoj aplikace
neuronovych siti pro zpracovani obrazu

e 2012 — AlexNet — Alex Krizhevsky

* Relu aktivacni funkce, velky pocet filtr( v konvolucnich vrstvach
* Paralelni trénovani architektury
* Augmentace dat

» Zavedeni Dropout vrstvy — nastaveni vystupu neuronu s urcitou
pravdépodobnosti na hodnotu 0. (Omezeni vzajemnych vztah( neuront 2>
neuron se nemuze spoléhat na pfitomnost jinych neuron()



https://www.image-net.org/challenges/LSVRC/
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
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Konvolucni neuronova sit — historie
e 2012 — AlexNet — Alex Krizhevsky

* Prekryvajici se ¢asti z Pooling vrstev

motor cooter

mite

black widow | |
dense ] cockroach

2048 tick
starfish Egyptian cat

3

13 dense

128 Max L
Max 128 Max pooling ?
pooling poaling

] grille
=i pickup
beach wagon

fire



https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Konvolucni neuronova sit — historie

2013 - ZFNet — Zeiler and F e

° - et — Zeller an ergus e T omé_ ool
* Zalozeny na AlexNet, ale ménici nastaveni owit | s ozt o128
jednotlivych vrstev Lo e

. conv-256 _conv-256 conv-256 conv-256
e 2014 - VGGNet — Visual Geometry Group Cmapos ] (g [E,W omss
* Prineslo hlubsi architekturu CNN, ktera -] Cusid _— ‘%:
dosahovala nizsi chybovosti v soutézi na e e B
datasetu ImageNet. —
* Nova filozofie — zvétdenim hloubky lze e e e .
modelovat vice nelinearit ve funkci > Comei] o] e
zohledriovani hloubky jako kritické slozky pfi e ||

navrhu topologie. rod rdon podms -
[somax | [ sofmax | [ sofmax

11-layer 13-layer 16-layer 19-layer
(VGG-11) (VGG-13) (VGG-186) (VGG-19)



https://arxiv.org/abs/1409.1556
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Konvolucni neuronova sit — historie
e 2014 — GoogleNet

* Trend zvétSovani hloubky sité, ale bez pouziti plné propojenych vrstev (12x méné
parametrd nez u AlexNet, 28x méné parametrl nez u VGG)

» Zavedeni ,inception” modulu - cilem je aproximovat optimalni lokalni struktur CNN.
UmozZnuje pouzit v jednom bloku vice velikosti filtr(i, misto abychom byli omezeni na
jednu velikost filtru, které pak spojime a predame dalsi vrstve.

Filter
Filter concatenation
concatenation

T )

3x3 convolutions 5x5 convolutions

1x1 convolutions

1x1 luti [} T 3

ﬂtinns 1x1 convolutions 3x3 max pooling
Previous layer Previous layer

(a) Inception module, naive version (b) Inception module with dimension reductions

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling



https://arxiv.org/abs/1409.4842
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Konvolucni neuronova sit — porovnani

80 -
Inception-v3 5
P . : ResNet-101 :
slresverso T veeae  vees
. ResNet-34
R 70- ResNet-18
=] @
g GoogleNet
E 65 - f
Y @ BN-NIN .
* 604 5M 35M  65M  95M  125M 155M
 BN-AlexNet
554 . AlexNet
50
B O VS > a 5 10 15 20 25 30 35 40
k@V‘h @tﬁﬁé&x{)@o N Operations [G-Ops]



https://www.semanticscholar.org/paper/An-Analysis-of-Deep-Neural-Network-Models-for-Canziani-Paszke/9a786d1ecf77dfba3459a83cd3fa0f1781bbcba4
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CNN — Detekce




Konvoluchi neuronova sit — detekce

 Zakladni pristup pro detekci objektl v obraze je pouziti klasifikatoru
na tzv. pohyblivé okno (slidding window)

* Uvazuji se tzv. ohranicujici obdélniky pro detekci pozice objektu
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Konvolucni neuronova sit — vyhodnoceni

* Kvyhodnoceni detekcnich uloh se pouziva metrika loU - Intersecion
over Union

Intersection

Union Intersection over Union

IoU =

B NB, Ej

B/ UB, -
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Konvolucni neuronova sit — R-CNN
e 2014 — R-CNN

* 2 Fazovy detektor (pristupuje k problému rozdélenim na faze)
* Projde obrazek CNN a urci ndvrh oblasti zajmu, pak kazdy ndvrh projde siti pro klasifikaci

aeroplane? no.

person? yes.

tvmonitor? no.



https://arxiv.org/pdf/1504.08083
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Konvolucni neuronova sit — Fast R-CNN
e 2015 - Fast R-CNN

* Kombinuje 2 faze - Jednou projet obrazek CNN + aZ potom resit jednotlivé regiony

* Postup detekce:
* Cely vstupni obrazek projde jednou hlubokou CNN (napf. VGG-16). Vystup = Feature mapa (popis obrazku).
* Na feature mapé se aplikuji tzv. Region Proposal Regions (Rols) — oblasti, kde by mohly byt objekty
* Pro kazdy Rol: PoutZije se specidlni vrstva = Rol Pooling: Pfevzorkuje fixni velikosti (napt. 7x7). (Pro FFNN)
* Vystup z Rol Poolingu jde do pIné propojené vrstvy (klasifikacni head).

Outputs: bbox
softmax regressor

Rol

Rol feature



https://arxiv.org/pdf/1504.08083
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Konvolucni neuronova sit — YOLO
e 2016-YOLOvV1

* You Only Look Once — Pfindsi novy pfistup kombinujici faze z 2 fazovych detektor(

* Obraz se rozdéli na 7x7 (v originale) bunék a kazda bunka pfedpovida nékolik
bounding boxud véetné pravdépodobnosti, Ze tam objekt je, a klasifikaci do tfid.

= %ounding boxes + confidence
h_ "
I ®

S x Sgrid on input

Class probability map



https://arxiv.org/pdf/1506.02640v5
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Konvolucni neuronova sit — YOLO
e 2018 -YOLOV3

* Navazuje na v2, s vylepsSenim diky vyuZziti tzv. ,,anchor box(“ misto bounding box{

Bounding box
* Vysledny obdélnik kolem objektu. Vznika po vypoctu/predikci modelu.

Anchor Box
* Preddefinované tvary box(, které model pouziva jako ,startovni Sablony“ pro predikci bounding boxu.

* Vyutziti vice Urovni map pfiznak
* Poufiti ,multi-scale” pfistupu (tfi urovné detekce) > lepsi detekce mensich obj.
* Pocatek zavadéni tzv. ,paternich” siti (Backbone)

» Cast modelu, ktera extrahuje feature mapy.
* Typicky predtrénovana na ImageNet (klasifikace).
* Detektor pak pfidava jen ,hlavicku“ (head) pro detekci objekt(.



https://arxiv.org/pdf/1804.02767
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Konvolucni neuronova sit — YOLO
* YOLO, YOLOvVS8

RozSifeni zamérujici se zejména na zlepseni presnosti a udrzeni real-time inference
Pfechod pod Open-source platformu Ultralytics

RGzné implementace + snadné vlastni implementace (PyTorch, pfipravené skripty)
RGzné velikosti sité (U, S, M, L, X)

Testovani a optimalizace backbone

Pokrocila augmentace pro zlepSeni schopnosti generalizovat



https://docs.ultralytics.com/models/
https://yolov8.com/
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Konvolucni neuronova sit — porovnani

5501 @ . MIbS
% ultralytics
52.5 1 YOLO 1
~ 50.0 —e— YOLO11
T YOLOV10
E’a_g 47.5 YOLOV9
< YOLOV8
g 45.0 YOLOV?
O YOLOV6-3.0
S 425 YOLOV5
PP-YOLOE+
40.0 - 1 DAMO-YOLO
YOLOX
37.5 1 EfficientDet
0 2 4 6 8 10 12 14 16

Latency T4 TensorRT10 FP16 (ms/img)
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CNN — Segmentace




Segmentace obrazovych dat

* Pokrocilejsi metoda, prirazujici tfidu (label) jednotlivym pixeliim

* |nstancni vs Sémanticka

Semantic Segmentation Instance Segmentation
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/

Segmentace obrazovych dat — uziti

* Medical imaging, Self-driving cars, Remote Sensing

Grassland

Road
Arable Land

Desert
Forest Land
Waters
Garden
Structures

Building

Artificial digging
ground




Segmentace pomoci CNN

e Konvolucni vrstvy produkuji vystupni data — zpracované obrazky

c, 5, c. s,

Feature Maps  Feature Maps Feature Maps  Feature Maps
28128 14x14 10x10 5x5 N n;

Subsampling Conwolution

Subsampling  Convolution  Coenvolution
I

Vystupni FEATURE EXTRACTION CLASSIFICATION
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Segmentace pomoci CNN

* U segmentace vyzadujeme na vystupu oznaceny obrazek.
* Modely zalozené na principu Enkodér-Dekodér nebo Auto-Enkodér.

* Jsou zalozené na vlastnosti konvolucnich siti kddovat vstupni
informaci (obrazek).

Input Image

Latent
Representation

d) |

Output Map




Segmentace pomoci CNN

* Enkodér-Dekodér schéma — postupné kédovani vlastnosti obrazku a
nasledné jeho postupné dekddovani pro vygenerovani
segmentovaného obrazku

224x224




Segmentace pomoci CNN

» Skip spojeni — prenaseji urcité klicové vlastnosti mezi enkodérem a
dekodérem v dané hloubce




Segmentace pomoci CNN

e UpSampling vrstva — zvétsuje plvodni rozmér vstupu

* Metody: replikace, primérovani, Unpooling

4
Repeat | 4
4 4 1415|566
414 |5|5]16|6
41516
5|5 717155 /(4]4
7154 Repeat | 5
5|5 717155 [4]4
863
8, 8|6|6|3|3
Input
7|7 8 8,66 |3|3
Repeat | 7
717 Output
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Segmentace pomoci CNN
e UpSampling vrstva — zvétsuje plvodni rozmér vstupu

* Metody: replikace, primérovani, Unpooling

.




Segmentace pomoci CNN

e UpSampling vrstva — zvétsuje plvodni rozmér vstupu

* Metody: replikace, primérovani, Unpooling

Max Pooling

Remember which element was max! Max Unpooling

Use positions from

112163 pooling layer olol2lo
I 12 ol1]lo0fo0
» 5 6 _> === —’ R 3
122 7 | 8 | Rest of the network 314 ojo]o]oO
13148 30|04
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4
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Segmentace pomoci CNN — architektury
* SegNet

Convolutional Encoder-Decoder Output

Pooling Indices

-
RGB Image I conv + Batch Normalisation + ReLU Segmentation
I Pooling [ Upsampling Softmax



https://arxiv.org/pdf/2001.05566.pdf
https://arxiv.org/abs/1511.00561
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Segmentace pomoci CNN — architektury

* U-Net

input
image
tile

572 x 572

64 64
128 64 64 2
output
> > > .
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Segmentace pomoci CNN — architektury

e FCN — Fully Convolutional Network
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Segmentace pomoci CNN — architektury

* Pyramid Network modely

y
H
L
2
S
!
L

o]
CONCAT

(a) Input Image (b) Feature Map (c) Pyramid Pooling Module (d) Final Prediction
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Segmentace pomoci CNN — architektury
* Mask R-CNN

* Objekty jsou klasifikovany a lokalizovany pomoci ohranicujiciho boxu a sémantické
segmentace, ktera klasifikuje kazdy pixel do danych kategorii. Kazda oblast zajmu
dostane segmentacni masku.

il RolAlign
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Segmentace pomoci CNN — architektury

e Segmentacni uloha vede k zisku nového obrazku, ktery nemusi
zachycovat pouhé pfrirazeni do tfidy, ale mlze vytvaret novy obrazek

* GANs - Generative Adversarial Networks

¢ Generovani kreslenych postavicek

e Starnuti obliceje

* Vybarvovani obrazkd

Training set

—»
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Generator

\I

Fake image

Discriminator
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Datasety

* Datasety jsou nedilnou soucasti pfi praci s neuronovymi sitéemi.

* V obrazovém zpracovani mohou vstupni obrazky nabyvat 2D, 2.5D
(RGB+D), 3D rozmérd.

* Podle dané ulohy existuji rlizné datasety, na kterych se provadi
testovani vlastnich topologii vzhledem k ostatnim. Prehledné shrnuti
dostupnych datasetl bylo napf. popsano v clanku z 2020.

* Kromé vytvorenych ,obecnych” datasetu je ale ¢asto pro specifickou
ulohu vytvorit datasety vlastni.
* Vytvoreni obrazk( trénovaci a testovaci mnoziny.

* Ruéni oznaceni dat (zisk tzv. ground truth) - bounding boxy, labelling pro
segmentaci (prehled 2022), vlastni oznacovani (vlastni aplikace)



https://arxiv.org/pdf/2001.05566.pdf
https://www.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html
https://www.v7labs.com/blog/best-image-annotation-tools
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Augmentace

 Vlastni datasety jsou Casto vytvoreny z nékolika stovek, tisic(
obrazkl, které nepokryvaji dostacujici ¢ast pro spravné natrénovani
neuronove site.

* Pomoci augmentace mlizeme dataset uméle rozsirit (plvodni
obrazky orotovat, ztmavit, posunout, ...)

* Pouziti vice dat pro trénovani vede k lepsi generalizaci sité.

 Tensorflow Data Generator



https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
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Prumyslova aplikace




Ukol — klasifikace vyrobku

* Pecivo; kontrola kvality
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Ukol — klasifikace vyrobku

* Pecivo; kontrola kvality
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Ukol — klasifikace vyrobku

Nedokonaly
tvar




Ukol — klasifikace vyrobku

* Podminky:
* Presnost (Accuracy, Precision, Recall)
* Vypocetni narocnost
* Na jakém datasetu?




Ukol — klasifikace vyrobku

* Dataset:
e OK— 1896 vzorku
» Spatnd barva — 512 vzorkd
e Néco navic— 632 vzork(
* Nedokonaly tvar — 1860 vzorku




Ukol — klasifikace vyrobku

* Pro trénovani je treba rozdeélit (70:15:15):
OK — 1327 Train, 284 Val, 285 Test

Spatnd barva — 358 Train, 76 Val, 78 Test

* Néco navic — 442 Train, 94 Val, 96 Test
Nedokonaly tvar — 1302 Train, 279 Val, 279 Test




Ukol — klasifikace vyrobku

* Navrh neuronového modelu
 Vstupni velikost obrazku
* Normalizace dat
e Pouziti konvolucnich a pooling vrstev
* Dropout vrstva
* PIné propojené vrstvy
 Vystupni vrstva
e Chybova funkce a trénovaci algoritmus
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