

Umělá inteligence
pro průmyslovou praxi

Kurz celoživotního vzdělávání

prof. Ing. Petr Doležel, Ph.D.

Umělá inteligence pro průmyslovou praxi

prof. Ing. Petr Doležel, Ph.D.

FEI, Univerzita Pardubice
Nám. Čs. legií 565

e-mail: petr.dolezel@upce.cz
tel.: 466 037 123

Umělá inteligence pro průmyslovou praxi

Úvod

Umělá
inteligence

Expertní systémy

(ES) Fuzzy systémy

(FS)

Evoluční

algoritmy

(EA)

Umělé neuronové sítě

(NS)

Nízká úroveň
modelování

Vysoká úroveň
modelování

Mozek Parametry mozku
Váha: 1200 - 1400 g
Objem: 140 x 160 x 90 mm
Plocha: 2200 - 2400 cm2

Šedá kůra (cortex): tloušťka 1 - 4,5 mm

Hmotnosti mozku různých zvířat
velryba 7800 g
slon 6000 g
delfín 1500 g
gorila 540 g
kráva 460 g
ovce 140 g
pes 72 g
kočka 30 g
potkan 2 g
ještěrka 0,08 g

Mozek - funkce

Mozek – některá historická fakta

335 let př.n.l. Aristoteles paměť, sny a pod.

400 let př.n.l. Platon v mozku věčná duše

130 n.l. R.C. Galenus nervy jako trubičky

1660 I. Newton šíření vibrací

1771 L. Galvani elektrický potenciál

19. století intensivní výzkum

1835 J. E. Purkyně identifikace neuronu

neuronová síť

1864 P. Brocca lokalizace centra řeči

Biologický neuron
Soma tělo neuronu
 rozměr μm až 10 μm

Dentrit vstup do neuronu
 délka 3 mm

Axon výstup z neuronu
 délka až v metrech

Synapse kontakt mezi neurony

V mozku (v cortexu) je odhadem 10 miliard neuronů uložených zhruba v 6
vrstvách. Hustota je (7 – 8).104 neuronů na 1 mm3. Každý neuron může mít s
jiným neuronem 10 až 100 tisíc propojení. Celkový počet propojení je cca
60000 miliard.

Biologická neuronová síť
Propojení jednotlivých neuronů, synapse
určují propustnost (váhu) daného spojení

Umělá neuronová síť

Biologická neuronová síť

Matematický popis

Umělá neuronová síť

MOZEK
Hardware lidského bytí

Základní procesor biologického systému

Umělá neuronová síť

Vstupy

Výstupy

Vstupy

Výstupy

Použití umělé neuronové sítě

• Predikce
• Univerzální aproximace
• Rozpoznávání vzorů
• Rozhodování
• Zpracování signálů

Co je AI?

Schopnost strojů napodobovat kognitivní funkce, jako je učení a rozhodování.

AI (Artificial Intelligence)

AI (Artificial Intelligence)

Co je AI?

Podskupina AI zaměřená na trénování algoritmů na datech.

Strojové učení
(Machine Learning)

AI (Artificial Intelligence)

Co je AI?

Pokročilá forma strojového učení, využívající neuronové sítě.

AI (Artificial Intelligence)
Strojové učení

(Machine Learning)
Hluboké učení

(Deep Learning)

AI (Artificial Intelligence)
Strojové učení (M

achineLearning)

Vývoj, pokroky a „doby ledové“
• 1950s – Počátky AI

• Alan Turing představuje svůj test jako způsob měření inteligence strojů.

• První pokusy o programy simulující šachovou hru nebo logiku.

Vývoj, pokroky a „doby ledové“
• 1956 – Dartmouthská konference

• AI se rodí jako obor: První zmínka o pojmu „Artificial Intelligence“.

• Optimismus: Představa, že stroje budou brzy myslet jako lidé.

Vývoj, pokroky a „doby ledové“
• 1970s – První AI ZIMA (AI Winter)

• Nedostatek výpočetního výkonu a neúspěchy v aplikacích.

• Pokles financování, protože AI nesplnila přehnaná očekávání.

Vývoj, pokroky a „doby ledové“
• 1980s – Renesance AI díky expertním systémům

• Vývoj expertních systémů (např. MYCIN v medicíně).

• Komerční úspěchy vedly ke zvýšení financování.

• Neuronové sítě se objevují jako potenciální řešení.

Vývoj, pokroky a „doby ledové“
• 1990s – Druhá AI ZIMA (AI Winter 2)

• Důvod: Expertní systémy byly drahé a rigidní.

• Nadšení z AI znovu upadá.

Vývoj, pokroky a „doby ledové“
• 2000s – Návrat díky velkým datům

• Hluboké učení (Deep Learning) začíná přinášet skutečné výsledky.

• Využití masivního výpočetního výkonu (GPU).

• První velké úspěchy ve strojovém vidění a rozpoznávání hlasu.

• 2010s – Zlatý věk AI
• AI poráží lidské šampiony v hrách (šachy, Go – AlphaGo od DeepMind).

• Rozmach personalizovaných služeb a aplikací (Google Assistant, Netflix).

• Hluboké neuronové sítě dominují v přirozeném jazyce (GPT, BERT).

Vývoj, pokroky a „doby ledové“
• 2020s – Současnost a kam směřujeme

• Vývoj generativních modelů (ChatGPT, DALL-E, MidJourney).

• AI řeší problémy ve zdravotnictví, logistice, vzdělávání, ale přináší i výzvy (etika,
dezinformace).

Důvody pro „doby ledové“ a pokroky AI
• Technologické limity: Nedostatek výpočetního výkonu a dat.

• Přehnaná očekávání: Nedosažené sliby vyvolaly pokles financování.

Data?

Typy učení v AI
• Supervised Learning (Učení s učitelem)

• Jak to funguje?
• Model se trénuje na označených datech.

Typy učení v AI
• Unsupervised Learning (Učení bez učitele)

• Jak to funguje?
• Model se snaží najít strukturu v neoznačených datech (např. shlukování dat).

Typy učení v AI
• Reinforcement Learning (Posilované učení)

• Jak to funguje?
• Model se učí na základě zpětné vazby (odměny a tresty) během interakce s

prostředím.

Umělý neuron

∑
yya

w1

w2

w3

wR

x1

x2

x3

xR

w0

Tělo neuronuVáhy spojení

Výstup

neuronuV
st

u
p
y

 n
eu

ro
n

u
Agregační

funkce

Aktivační

funkce

Práh

neuronu

Vstupy x1, …, xi, …, xn modelují dendrity,
Váhy spojení w1, …, wi, …, wn modelují synapse,
Výstup y
 simuluje činnost axonu.

Agregace vstupních signálů, prahování a následně jejich nelineární zobrazení představují
model těla neuronu, tj. vyhodnocení celkového vstupního aktivačního potenciálu a jeho
transformaci na výstupní signál.

Přenos signálu umělým neuronem

∑
yya

w1

w2

w3

wR

x1

x2

x3

xR

w0

Tělo neuronuVáhy spojení

Výstup

neuronuV
st

u
p
y

 n
eu

ro
n

u
Agregační

funkce

Aktivační

funkce

Práh

neuronu

Konfluence - splynutí

kde  je obecný operátor konfluence

Operátor konfluence  nahradíme prostým součinem hodnot xi a wi.

iii wxz =

Přenos signálu umělým neuronem

∑
yya

w1

w2

w3

wR

x1

x2

x3

xR

w0

Tělo neuronuVáhy spojení

Výstup

neuronuV
st

u
p
y

 n
eu

ro
n

u
Agregační

funkce

Aktivační

funkce

Práh

neuronu

Agregace – seskupení a prahování

Operátor agregace G nahradíme prostým součtem (včetně prahu)

i

n

i
a zy

0
G
=

=

0

1

wwxy i

n

i

ia +=
=

Přenos signálu umělým neuronem

∑
yya

w1

w2

w3

wR

x1

x2

x3

xR

w0

Tělo neuronuVáhy spojení

Výstup

neuronuV
st

u
p
y

 n
eu

ro
n

u
Agregační

funkce

Aktivační

funkce

Práh

neuronu

Aktivace – nelineární zobrazení vstupního potenciálu

)(ayy =

A
kt

iv
ač

n
í f

u
n

kc
e

Učení umělé neuronové sítě

Cíl učení

Cílem učení neuronové sítě je nastavit parametry sítě tak, aby dávala požadované
výsledky.

V biologických sítích jsou zkušenosti jsou uloženy v synapsích.
V umělých neuronových sítích jsou zkušenosti uloženy v jejich matematickém
ekvivalentu - váhách.

Učení

Je proces, kdy se síť přizpůsobuje (adaptuje) vnějšímu prostředí, které na ní působí
prostřednictvím dat – vzorů získaných měřením (pozorováním) na objektu, jehož vlastnosti
má v konečné fázi reprezentovat, případně na problému, který má následně řešit.

Učení se dělí na trénování, testování a validaci.

Učení umělé neuronové sítě

Základní typy učení

Učení s učitelem
Podobně jako v biologických sítích je zde využita zpětná
vazba. Neuronové síti jsou předkládány příslušné vzory.
Na základě aktuálního nastavení je zjištěn aktuální
výsledek. Ten porovnáme s vyžadovaným výsledkem a
určíme chybu. Poté je spočítána nutná korekce (dle typu
neuronové sítě) a upraveny hodnoty vah, prahů,
případně strmostí aktivačních funkcí, aby se snížila
hodnota chyby. Toto se opakuje až do dosažení
stanovené minimální chyby.

Učení bez učitele
Při učení bez učitele není vyhodnocován výstup. Při
tomto učení je výstup dopředu neznámý. Síť dostává na
vstup sadu vzorů, které si sama třídí. Buď si vzory třídí do
skupin a reaguje na typického zástupce, nebo si
přizpůsobí topologii vlastnostem vstupu.

Algoritmus

učení

Vstup

Učitel

Výstup

Váhy

Algoritmus

učení

Vstup Výstup

Váhy

Topologie umělých neuronových sítí

Neuronové

sítě

Binární

vstupy

Reálné

vstupy

S učitelem

Perceptron Vicevrtvý

perceptron

Kohonenova

síť

Bez učitele S učitelem Bez učitele

Carpenter

Grossbergova

Hemmingova

síť

Hopfieldova

síť

Vstupy

Učení

Sítě

Topologie umělých neuronových sítí

Skryté vrstvy
V

st
u

p
n

í v
rs

tv
a

V
ýs

tu
p

n
í v

rs
tv

a

Topologie umělých neuronových sítí

Dopředná neuronová síť

Rekurentní neuronová síť

UNS – některá historická fakta
1943 McCulloch, Pitts matematický model neuronu – umělý neuron

1949 Hebb pravidlo pro učení, adaptace vah (synapsí)

1951 Minsky a kol. Neuropočítač Snark

1957 Rosenblatt Perceptron, učení

1958 Rosenblatt Neuropočítač Mark I Perceptron

1959 Windrow, Hoff Model neuronu ADALINE (ADaptive LInear Neuron)

1962 Windrow, Hoff Neuronová síť MADALINE (Many ADALINE)

1969 Minsky Kritika perceptronu, neschopnost modelovat funkci

XOR

70. léta útlum

Grossberg, Kohonen,

Anderson
tichý výzkum

1982, 84 Hopfield symetrické neuronové sítě

1986 Rumelhart, Hinton, McClelland Algoritmus zpětného šíření chyby, Backpropagation

1987 Kohonen samoorganizující se síť (Kohonenova mapa)

1987 Konference v San Diego
1700 účastníků zakládá International Neural Network

Society (INNS)

UNS – některá historická fakta

Lineární algebra

Základy vektorů
• Co je vektor?

• Uspořádaná množina čísel reprezentující bod, směr nebo sílu v prostoru.

• Reprezentace

• Sloupcový
3
4

• Řádkový (3 4)

Vektory jsou prvky lineárních prostorů a slouží jako základní stavební bloky pro
reprezentaci dat i parametrů v neuronových sítích.

Základy vektorů
• Základní operace

• Sčítání a odčítání

𝑎1, 𝑎2, … , 𝑎𝑛 + 𝑏1, 𝑏2, … , 𝑏𝑛 = 𝑎1 + 𝑏1, 𝑎2 + 𝑏2, … , 𝑎𝑛 + 𝑏𝑛

 𝒂 = 5, 1, 3 , 𝒃 = 2, 2, 3 , 𝒂 + 𝒃 = 7, 3, 6

• Skalární násobení

 𝑘 ⋅ 𝑎1, 𝑎2, … , 𝑎𝑛 = 𝑘 ⋅ 𝑎1, 𝑘 ⋅ 𝑎2, … , 𝑘 ⋅ 𝑎𝑛

 3 ⋅ 2, 1, 4 = 6, 3, 12

Základy vektorů

Více informací o normách s vizualizací

• Základní operace
• Skalární (dot) součin

 𝒂 = 𝑎1, 𝑎2, … , 𝑎𝑛 , 𝒃 = 𝑏1, 𝑏2, … , 𝑏𝑛

 𝒂 ⋅ 𝒃 = 𝑎1 ⋅ 𝑏1, 𝑎2 ⋅ 𝑏2, … , 𝑎𝑛 ⋅ 𝑏𝑛

 𝒂 = 5, 1, 3 , 𝒃 = 2, 2, 3 , 𝒂 ⋅ 𝒃 = 10, 2, 9

• Norma vektoru - Norma vektoru udává jeho délku nebo velikost.

 Součet absolutních hodnot jednotlivých složek (L1 norma)

 Euklidovská (L2 norma) 𝑎 = 𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑛
2

Více informací o normách s vizualizací

https://montjoile.medium.com/l0-norm-l1-norm-l2-norm-l-infinity-norm-7a7d18a4f40c

Základy matic
• Co je matice?

• Uspořádaná tabulka čísel uspořádaných do řádků a sloupců.

• Definice: Matice 𝐴 o rozměrech 𝑚 × 𝑛 má 𝑚 řádků a 𝑛 sloupců.

• Reprezentace

• Matice 2×3
1 1 4
2 5 1

• Matice 3×2
2 1
1 2
1 5

Indexace prvků: Prvek 𝑎𝑖𝑗 je umístěn na 𝑖-tém řádku a 𝑗-tém sloupci.

Základy matic
• Základní operace

• Sčítání a odečítání

• Operace se provádí po jednotlivých prvcích.

• Matice musí mít stejné rozměry.

 𝐀 =
1 1 4
2 5 1

 , 𝐁 =
2 2 1
1 1 2

 , 𝐀 + 𝐁 =
3 3 5
3 6 3

• Skalární násobení

 3 ⋅
2 1
1 2
1 3

=
6 3
3 6
3 9

Základy matic
• Základní operace

• Násobení matic

• Součin matic 𝐴 a 𝐵 (označme 𝐴 jako 𝑚 × 𝑛 a 𝐵 jako 𝑛 × 𝑝) je matice 𝐶 o
rozměrech 𝑚 × 𝑝, kde prvek nové matice je

• Počet sloupců matice 𝐴 musí odpovídat počtu řádků matice 𝐵.

Základy matic
• Základní operace

• Násobení matic

• Počet sloupců matice 𝐴 musí odpovídat počtu řádků matice 𝐵.

Základy matic
• Základní operace

• Transpozice

• Operace, která převrací matici přes její hlavní diagonálu.

• Označuje se 𝐴𝑇 .

Základy matic
• Základní operace

• Inverze

• Inverzní matice 𝐴−1 je taková matice, že: 𝐴⋅𝐴−1 = 𝐴−1⋅𝐴 = 𝐼

• Matice 𝐴 musí být čtvercová.

• Matice 𝐴 musí být regulární.

Základy tenzorů
• Co je tenzor?

• Tenzor je obecnější pojem než matice.

• Umožňuje reprezentaci dat s více než dvěma rozměry.

• Rozšiřuje koncepty:

• Skalár (hodnost 0)

• Vektor (hodnost 1)

• Matice (hodnost 2)

• Tenzor (hodnost ≥ 3)

• Umožňuje modelovat a zpracovávat data s komplexní strukturou, což je klíčové v
moderním strojovém učení.

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

Základy tenzorů
• Příklady tenzorů

• Obrazy

• Obrázek lze reprezentovat jako 3D tenzor: výška, šířka, počet kanálů (např. RGB).

• Obrázek o rozměrech 256 × 256 pixelů s 3 kanály → tvar tenzoru: [256, 256, 3].

• Dávky dat (batches)

• Při trénování neuronových sítí se data často zpracovávají po dávkách.

• Batch obsahující 32 obrázků (každý s tvarem [256, 256, 3])

 → tvar tenzoru: [32, 256, 256, 3].

Základy tenzorů
• Základní operace

• Reshaping (přeskupení)

• Přetvoření tvaru tenzoru bez změny jeho dat.

• Umožňuje adaptovat data na požadavky konkrétního modelu.

• Příklad: Z tenzoru tvaru [28, 28, 1] (černobílý obraz) na tenzor tvaru [784]
(serializovaný obraz = v jednom vektoru).

Základy tenzorů
• Základní operace

• Kontrakce (složené násobení)

• Zobecnění maticového násobení na vyšší dimenze.

• Probíhá sčítání přes jeden nebo více indexů tenzoru.

• Sčítání a skalární násobení

• Provádí se element-wise (po prvcích) stejně jako u matic nebo vektorů.

NumPy

Použití knihovny NumPy
• Základy knihovny NumPy

• Instalace knihovny – pip install numpy

• Import knihovny ve skriptu – import numpy as np

• Tvorba polí (tenzorů)
arr_1d = np.array([1, 2, 3, 4])

arr_2d = np.array([[1, 2, 3], [4, 5, 6]])

• Speciální funkce
zeros = np.zeros((3, 3))

ones = np.ones((2, 4))

rng = np.arange(0, 10, 2) # [0, 2, 4, 6, 8]

linsp = np.linspace(0, 1, 5) # [0, 0.25, 0.5, 0.75, 1.0]

Použití knihovny NumPy
• Základy knihovny NumPy

• Základní vlastnosti
print(arr_2d.shape)

print(arr_2d.dtype)

print(arr_2d.ndim)

• Indexování a slicing
arr = np.array([10, 11, 12, 13, 14, 15])

print(arr[0]) # první prvek

print(arr[1:4]) # prvky od indexu 1 do 3 (4 se nebere)

print(arr[-1]) # poslední prvek

• Obdobně v maticích a tenzorech

Použití knihovny NumPy
• Základy knihovny NumPy

• Manipulace s poli – reshape a ravel
arr = np.arange(12)

mat = arr.reshape((3, 4))

print(mat

flat = mat.ravel()

print(flat)

Použití knihovny NumPy
• Základy knihovny NumPy

• Manipulace s poli – skládání polí – concatenate, hstack, vstack
a = np.array([1, 2, 3])

b = np.array([4, 5, 6])

c_concat = np.concatenate((a, b))

c_hstack = np.hstack((a, b)) # pro 1D to bude podobné

print(c_concat) # [1, 2, 3, 4, 5, 6]

A = np.array([[1, 2], [3, 4]])

B = np.array([[5, 6], [7, 8]])

AB_v = np.vstack((A, B)) # Vertikální spojení (pod sebe)

AB_h = np.hstack((A, B)) # Horizontální spojení (vedle sebe)

Použití knihovny Matplotlib
• Grafické zobrazení

• Instalace knihovny – pip install matplotlib

• Import knihovny ve skriptu – import matplotlib.pyplot as plt

• Základní graf
import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 100)

y = np.sin(x)

plt.plot(x, y, label='sin(x)‘)

plt.title('Základní sinusovka‘)

plt.xlabel('x‘)

plt.ylabel('sin(x)‘)

plt.legend()

plt.show()

Použití knihovny Matplotlib
• Grafické zobrazení

• Scatter
x = np.random.randn(100)

y = np.random.randn(100)

plt.scatter(x, y, c='red', alpha=0.5, label='Náhodné body')

plt.title('Scatter plot ukázka')

plt.xlabel('X')

plt.ylabel('Y')

plt.legend()

plt.show()

Použití knihovny Matplotlib
• Grafické zobrazení

• Histogram
data = np.random.randn(500)

plt.hist(data, bins=20, edgecolor='black', alpha=0.7)

plt.title('Histogram rozložení')

plt.xlabel('Hodnota')

plt.ylabel('Frekvence')

plt.show()

Použití knihovny Matplotlib
• Grafické zobrazení

• Heatmap (imshow/matshow)
mat_data = np.random.rand(10, 10)

plt.imshow(mat_data, cmap='viridis')

plt.colorbar(label='Hodnota')

plt.title('Heatmap 10x10')

plt.show()

plt.matshow(mat_data, cmap='viridis')

plt.colorbar(label='Hodnota')

plt.show()

Použití knihovny Matplotlib
• Grafické zobrazení

• Vizualizace vícerozměrných dat (tenzorů) – řez dat

Tenzor 3D: 5 "vrstev" (např. 5 obrázků 10x10)

tensor_3d = np.random.rand(5, 10, 10)

fig, axes = plt.subplots(1, 5, figsize=(15, 3))

for i in range(5):

 axes[i].imshow(tensor_3d[i], cmap='viridis')

 axes[i].set_title(f"Vrstva {i}")

 axes[i].axis('off')

plt.show()

Použití knihovny Matplotlib
• Grafické zobrazení

• Vizualizace vícerozměrných dat (tenzorů) – průměrování

Tenzor 3D: 5 "vrstev" (např. 5 obrázků 10x10)

tensor_3d = np.random.rand(5, 10, 10)

mean_image = tensor_3d.mean(axis=0) # průměr přes 5 vrstev => výsledkem je 2D (10x10)

plt.imshow(mean_image, cmap='viridis')

plt.title('Průměr 3D dat přes 1. dimenzi')

plt.colorbar()

plt.show()

Perceptron

Model perceptronu
• Výkonným prvkem perceptronu je model neuronu s lineárně váženou agregační

funkcí, kde původne byla uvažována pouze skoková aktivační funkce

Model perceptronu
• Agregační funkce

𝑦𝑎 = ෍

𝑖

𝑥𝑖 ⋅ 𝑤𝑖 + 𝑤0

• Aktivační funkce

𝑦 = ቊ
 1 pro 𝑦𝑎 > 0

−1 pro 𝑦𝑎 ≤ 0

Využití perceptronu
• Prostřednictvím perceptronu lze řešit pouze problémy, jejichž řešení jsou

lineárně separovatelná. Tj. jsme schopni separovat data pouze do dvou
skupin, data navíc musejí být oddělitelná nadrovinou.

Odezva perceptronu
• V případě perceptronu je na konkrétní množinu vstupu odpovědí jediná

skalární hodnota y.

Pro odezvu platí: 𝑦 = 𝜙 𝑦𝑎 ,

kde 𝜙 je aktivační funkce

 𝑦𝑎 je potenciál neuronu

Pro výpočet potenciálu platí 𝑦𝑎 = σ𝑖=0
𝑅 𝑤𝑖 ⋅ 𝑥𝑖

Pro vztah výpočtu potenciálu neuronu lze použít maticový zápis: 𝑦𝑎 = 𝒘T𝒙

Hebbův zákon učení
• Pokud je hodnota vstupu do neuronu synchronní s očekávaným výstupem,

pak se váha spojení mezi příslušným vstupem a neuronem posiluje, pokud je
asynchronní (hodnoty nejsou shodné), váha se oslabuje.

• Matematicky toto lze v případě bipolárních vstupů a aktivační funkce zapsat
vztahem:

𝑤𝑖 = 𝑤𝑖 + 𝑥𝑖 ⋅ 𝑡,

 kde t je očekávaný výstup z neuronu

 xi je vstup

 wi je váha příslušného vstupu

Algoritmus chybového učení perceptronu
• Náhodně nastav váhy neuronu 𝐰, zvol koeficient rychlosti učení 𝛼.

• Dokud není splněna podmínka zastavení:
• Pro každý vstup z trénovací množiny:

• Spočítej výstupní hodnotu neuronu 𝑦.

• Spočítej chybu na výstupu 𝑒 = (𝑡 − 𝑦).

• Adaptuj práh neuronu dle vztahu 𝑤𝑖 = 𝑤0 + α ⋅ 𝑒

• Adaptuj váhy neuronu dle vztahu 𝑤𝑖 = 𝑤𝑖 + α ⋅ 𝑥𝑖 ⋅ 𝑒

Vzorový příklad – třídění chipsů
Chceme navrhnout systém pro třídění chipsů. Buď půjde brambůrek do sáčku,
nebo do koše.

Vzorový příklad – třídění chipsů
Chceme navrhnout systém pro třídění chipsů. Topologie daného perceptronu:

w1

w2

G
ya

w0

φ(ya)

Agregační

funkce

Aktivační

funkce

x1

x2

x0 = 1

Práh

neuronu

y

w1

w2

G
ya

w0

φ(ya)

Agrega ní

funkce

Aktiva ní

funkce

x1

x2

x0 = 1

Práh

neuronu

y

Vzorový příklad – třídění chipsů
Jedná se o typický příklad učení s učitelem -> tvorba datasetu.

Hmotnost Intenzita odraženého světla Výsledek

0,11 g 0,78 Vyřadit

0,27 g 0,68 Ponechat

0,07 g 0,33 Vyřadit

0,12 g 0,37 Vyřadit

0,34 g 0,63 Ponechat

0,47 g 0,72 Ponechat

0,28 g 0,78 Ponechat

0,44 g 0,92 Ponechat

0,13 g 0,44 Vyřadit

0,19 g 0,27 Vyřadit

Vzorový příklad – třídění chipsů
Jedná se o typický příklad učení s učitelem -> tvorba datasetu.

Hmotnost Intenzita světla Výsledek

0,11 g 0,78 Vyřadit

0,27 g 0,68 Ponechat

0,07 g 0,33 Vyřadit

0,12 g 0,37 Vyřadit

0,34 g 0,63 Ponechat

0,47 g 0,72 Ponechat

0,28 g 0,78 Ponechat

0,44 g 0,92 Ponechat

0,13 g 0,44 Vyřadit

0,19 g 0,27 Vyřadit

Vzorový příklad – třídění chipsů
Transformace a normalizace trénovací množiny.

Hmotnost Intenzita odraženého světla Výsledek

-0,8 0,5692 -1

0 0,2615 1

-1 -0,8154 -1

-0,75 -0,6923 -1

0,35 0,1077 1

1 0,3846 1

0,05 0,5692 1

0,85 1 1

-0,7 -0,4769 -1

-0,4 -1 -1

Hebbův zákon učení
• Pokud je hodnota vstupu do neuronu synchronní s očekávaným výstupem,

pak se váha spojení mezi příslušným vstupem a neuronem posiluje, pokud je
asynchronní (hodnoty nejsou shodné), váha se oslabuje.

• Matematicky toto lze v případě bipolárních vstupů a aktivační funkce zapsat
vztahem:

𝑤𝑖 = 𝑤𝑖 + 𝑥𝑖 ⋅ 𝑡,

 kde t je očekávaný výstup z neuronu

 xi je vstup

 wi je váha příslušného vstupu

Algoritmus chybového učení perceptronu
• Náhodně nastav váhy neuronu 𝐰, zvol koeficient rychlosti učení 𝛼.

• Dokud není splněna podmínka zastavení:
• Pro každý vstup z trénovací množiny:

• Spočítej výstupní hodnotu neuronu 𝑦.

• Spočítej chybu na výstupu 𝑒 = (𝑡 − 𝑦).

• Adaptuj práh neuronu dle vztahu 𝑤𝑖 = 𝑤0 + α ⋅ 𝑒

• Adaptuj váhy neuronu dle vztahu 𝑤𝑖 = 𝑤𝑖 + α ⋅ 𝑥𝑖 ⋅ 𝑒

Vzorový příklad – třídění chipsů
Trénování pomocí Hebbova zákona učení.

Hebbovo učení
wi = wi + xi t = …

P
rvn

í
vzo

r

w0 = 0 + 1 (-1) = -1
w1 = 0 + (-0,8)(-1) = 0,8
w2 = 0 + (0,5692)(-1) = -0,5692

D
ru

h
ý

vzo
r

w0 = -1 + (1)(1) = 0
w1 = 0,8 + (0)(1) = 0,8
w2 = -0,5692 + (0,2615)(1) = -0,3077

Třetí
vzo

r

w0 = 0 + (1)(-1) = -1
w1 = 0,8 + (-1)(-1) = 1,8
w2 = -0,3077 + (-0,8154)(-1) = 0,5077

Č
tvrtý
vzo

r

w0 = -1 + (1)(-1) = -2
w1 = 1,8 + (-0,75)(-1) = 2,55
w2 = 0,5077 + (-0,6923)(-1) = 1,2

Vzorový příklad – třídění chipsů
Trénování pomocí Hebbova zákona učení. Počet epoch (1 vs. 5).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Hmotnost, g

In
te

n
z
it
a
 o

d
ra

z
e
n
e
h
o
 s

v
e
tl
a

w0 = 1,0000
w1 = 5,8500
w2 = 4,3846

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Hmotnost, g

In
te

n
z
it
a
 o

d
ra

z
e
n
e
h
o
 s

v
e
tl
a

w0 = 5,0000
w1 = 29,2500
w2 = 21,9231

Vzorový příklad – třídění chipsů
Trénování pomocí chybového učení perceptronu.

Chybové učení
wi = wi + α x (t - y) = …

P
rvn

í
vzo

r

w0 = 0 + 0,1(-1 - 1) = -0,2

w1 = 0 + 0,1 (-0,8) (-1 - 1) = 0,16

w2 = 0 + 0,1 (0,5692) (-1 - 1) = -0,1138

D
ru

h
ý

vzo
r

w0 = -0,2 + … = …

w1 = 0,16 + … = …

w2 = -0,1138 + … = …

Vzorový příklad – třídění chipsů
Trénování pomocí chybového učení perceptronu. Počet epoch (1 vs. 5).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Hmotnost, g

In
te

n
z
it
a
 o

d
ra

z
e
n
e
h
o
 s

v
e
tl
a

w0 = 0,0000
w1 = 0,3100
w2 = 0,1477

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Hmotnost, g

In
te

n
z
it
a
 o

d
ra

z
e
n
e
h
o
 s

v
e
tl
a

w0 = 0,2000
w1 = 0,5200
w2 = 0,0215

Vzorový příklad – kvalita sušenek
Hmotnost sušenky (g): Ideální rozmezí je mezi 15 a 17 g.
Průměr sušenky (mm): Optimální hodnota se pohybuje mezi 50 a 55 mm.

Kvalita = 1: Sušenka má obě hodnoty v optimálním rozmezí.
Kvalita = 0: Alespoň jeden parametr je mimo dané rozpětí.

Hmotnost sušenky (g) Průměr sušenky (mm) Kvalita
16.0 52 1
15.5 51 1
14.8 50 0
16.5 54 1
17.2 53 0

Vzorový příklad – kvalita sušenek
Hmotnost sušenky
(g): 15 a 17 g.
Průměr sušenky
(mm): 50 a 55 mm.

Co s tím?

Formální model neuronu
• Oproti samotnému perceptronu mohou být uvažovány i jiné aktivační funkce

∑
yya

w1

w2

w3

wR

x1

x2

x3

xR

w0

Tělo neuronuVáhy spojení

Výstup

neuronuV
st

u
p
y

 n
eu

ro
n

u

Agregační

funkce

Aktivační

funkce

Práh

neuronu

Rozdílnost akt. funkcí – chování výstupu
• Lineární aktivační funkce

• Výstup: Neomezená reálná hodnota (lineární kombinace vstupů).

• Interpretace: reprezentuje "sílu aktivace".

• Saturovaná lineární aktivační funkce
• Výstup: Lineární kombinace vstupů oříznutá do předem daného intervalu.

• Interpretace: Reprezentuje "sílu aktivace" s omezeným rozsahem.

• Sigmoidální aktivační funkce
• Výstup: Hodnota v intervalu (např.) (0,1)(0,1).

• Interpretace: Výstup lze interpretovat jako pravděpodobnost nebo jistotu
přiřazení k dané třídě;

Celkový postup algoritmu učení
• Rozdělení dat na testovací, trénovací a validační množinu

• Nastavení vah a prahů sítě, nastavení koeficientu učení 𝛼

• Pro každou dvojici: vzor - očekávaný výstup,
• Spočítání odezvy sítě

• Spočítání chyby a aktualizace vah a prahů

• Test ukončení algoritmu
• Maximální počet epoch

• Změna hodnoty účelové funkce dále neklesá

• Dosaženo kapacity sítě – výkon na validační množině se zhoršuje → přetrénování

Proč provádět validaci?

Chyby u FFNN

N – počet vzorů
Q – počet výstupů

𝑒 = ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘
2

𝐸 =
1

𝑁
 ෍

𝑖=1

𝑁

𝑒𝑖

Varianty učení ANN
• Online

• Po každém vzoru dojde k aktualizaci hodnot vah a prahů.

• Offline
• Změny vah a prahů se sčítají v dočasné proměnné a jejich aktualizace se

provede až na konci epochy trénování (po celé epoše).

• Dávkové (batch)
• Kombinuje předchozí varianty, kde se aktualizace provádí po dávkách vzorků

(většinou po 64, 32, 16, 8, 4 vzorech).

• Kombinuje výhody a nevýhody obou variant (kompromis rychlosti a
paměťové náročnosti)

Umělá neuronová síť
Artificial Neural Network (ANN)

Obecné schéma ANN
• Váhy spojení mezi jednotlivými neurony jsou označeny symbolem wij.

• Příslušné indexy charakterizují spojení od i-tého zdrojového neuronu
k j-tému cílovému neuronu.

Topologie ANN
• Topologie (geometrie, struktura, architektura) neuronové sítě popisuje

umístění jednotlivých neuronů v síti a jejich propojení.

• Společným rysem je vrstevnatá struktura, kde rozlišujeme:
• vstupní vrstvu,

• samotnou vrstvu nebo vrstvy skryté,

• výstupní vrstvu.

• Topologie je pak definována počtem neuronů v jednotlivých vrstvách,
počtem vrstev a vlastními propojeními jednotlivých neuronů/vrstev.

Topologie ANN
• Podle toku signálu ANN dělíme na

• dopředné, v nichž se signál šíří po orientovaných spojeních jedním směrem (od
vstupní vrstvy k výstupní vrstvě);

• zpětnovazební (rekurentní), u nichž existují mezi neurony, nebo vrstvami zpětné
vazby. Je třeba poznamenat, že v těchto sítích je někdy těžko definovat vstupní a
výstupní vrstvy.

Rekurentní ANN
• Nejjednodušší rekurentní ANN je jeden neuron se

zpětnou vazbou.

• Nechť je neuron systém s dynamickým přenosem:

Vstup

Rekurentní ANN

Exponenciální relaxace Exponenciální růstIntegrace vstupu

Paměť!

Rekurentní ANN
• Atraktor – konečný stav, do kterého dynamický systém časem směřuje.

• Pro 𝜆 > 1 je neuron po přivedení vstupu „přitahován“ do atraktoru.

Rekurentní ANN
• Pokud výstup neuronu omezíme bipolární aktivační funkcí, tak se nutně

ustálí v dané hodnotě výstupu (typicky -1, 1 nebo 0, 1).

• Z jakéhokoli stavu se pak takový neuron ustálí v atraktorech.

• Pro více takových neuronů platí ustálení v nějakém stavu z jejich
stavového vektoru (2n možných stavů).

• Když dané neurony spojíme vzájemně, tak se z některých dříve
stabilních stavů stanou stavy nestabilní.

• Podle spojení pak konvergují do vzájemně komplementárních množin
z původního stavového prostoru.

Hopfieldova síť

Hopfieldova síť
• Je rekurentní neuronovou sítí s

neurony v jedné vrstvě a úplnými
váženými spojeními mezi všemi
neurony vyjma sebe sama.

• Výstup je závislý nejen na vstupech
do sítě, ale také na aktuálních
stavech jednotlivých neuronů.

• Samostatné neurony Hopfieldovy sítě
nemají práh.

Diskrétní Hopfieldova síť
• Pracuje jako autoasociativní paměť.

• Na základě neúplných informací si tedy dokáže vybavit vzor
uložený v paměti.

• Agregační funkce je dána vztahem:

• Pro aktivační funkci platí:


=

=
n

i

iia wxy
1

1 pro 0

1 pro 0

a

a

y

y



− 
=y

Diskrétní Hopfieldova síť
• Hodnoty vstupů i výstupů jsou bipolární.

• Každý neuron tedy vypočte svůj potenciál a aktivuje svůj
výstup podle bipolární aktivační funkce.

• Kapacita sítě je nízká, musí být splněno S < 0.138n

• Automaticky si pamatuje inverzní vzory

• n … kolika hodnotami je popsán jeden vzor

• S … kolik je vzorů k zapamatování

Diskrétní Hopfieldova síť
• Rozlišujeme mezi fází učení a fází vybavování

Diskrétní Hopfieldova síť
• V případě, že na vstup je poslána kombinace, která není blízká

žádnému ze vzorů, mohou nastat následující situace:
• síť konverguje ke vzoru, který nebyl součástí paměti (tzv. fantom);

• síť nekonverguje (osciluje mezi dvěma stavy);

• síť konverguje k některému ze vzorů uložených v paměti (pokud se vstup
nachází v oblasti atrakce některého ze vzorů).

• Aplikace Hopfieldovy sítě je omezena nejen nízkou kapacitou
paměti, ale také určitou nejistotou výsledku.

Diskrétní Hopfieldova síť
• Odezva Hopfieldovy sítě jako autoasociativní paměti (vybavování

sítě) probíhá iterativním porovnáváním vstupů sítě (v první iteraci)
a následně předchozích výstupů (v dalších iteracích) s uloženými
vzory podle Hammingovy metriky a za odpověď se bere vzor v
paměti, který má tuto vzdálenost nejkratší.

• Síť konverguje do stabilního stavu, který se už dále nemění.

• Hopfieldova síť jednoznačně definovaná jejími vahami, které je
zvykem značít symbolem wij , kde i je index neuronu, ze kterého
signál vystupuje a j je index neuronu, do kterého signál vstupuje.

Učení Hopfieldovy sítě
• Aplikuje se Hebbův zákon učení

• Matice vah w je symetrická matice n x n, kde n je počet vstupů do
sítě, pro každý prvek matice w platí:

 kde S je počet vzorů trénovací množiny








=


= 

=

,0
1

jipro

jiproxx
w

s

k

kjki
ij

Vybavování Hopfieldovy sítě

1) yi(0) = xi i = 1 … n

2)

3) Krok 2) se opakuje do ustálení

() ()
1

1 1
n

j ij i

i

y k f w y k j n
=

 
+ = = 

 


Příklad 1
• Dva vzory k zapamatování

 
 1111

1111

2

1

−−=

−=

x

x








=


= 

=

,0
1

jipro

jiproxx
w

s

k

kjki
ij



















=

0

0

0

0

xxx

xxx

xxx

xxx

w

22221121112 =+= xxxxw

02321131113 =+= xxxxw 

















−−

−

−

=

0022

0000

2002

2020

w

...atd

Příklad 1

• Vybavování – 1. iterace

 1111 −−−=test

() ()
1

1 1
n

j ij i

i

y k f w y k j n
=

 
+ = = 

 




















−−

−

−

=

0022

0000

2002

2020

w

() () 14)1()2()1(012)1(01 ==−−+−++−= ffy

() () 10)1()2()1(010)1(22 ==−−+−++−= ffy

() () 10)1(0)1(010)1(03 ==−+−++−= ffy

() () 10)1(0)1(01)2()1()2(4 ==−+−+−+−−= ffy

Příklad 1

• Vybavování – 2. iterace

 1111=y

() ()
1

1 1
n

j ij i

i

y k f w y k j n
=

 
+ = = 

 




















−−

−

−

=

0022

0000

2002

2020

w

() () 101)2(1012101 ==−+++= ffy

() () 101)2(1010122 ==−+++= ffy

() () 10101010103 ==+++= ffy

() () 1410101)2(1)2(4 −=−=++−+−= ffy

Příklad 1

• Vybavování – 3. iterace

 1111 −=y

() ()
1

1 1
n

j ij i

i

y k f w y k j n
=

 
+ = = 

 




















−−

−

−

=

0022

0000

2002

2020

w

() () 14)1()2(1012101 ==−−+++= ffy

() () 14)1()2(1010122 ==−−+++= ffy

() () 10)1(01010103 ==−+++= ffy

() () 14)1(0101)2(1)2(4 −=−=−++−+−= ffy

Diskrétní Hopfieldova síť
• V případě, že na vstup je poslána kombinace, která není blízká

žádnému ze vzorů, mohou nastat následující situace:
• síť konverguje ke vzoru, který nebyl součástí paměti (tzv. fantom);

• síť nekonverguje (osciluje mezi dvěma stavy);

• síť konverguje k některému ze vzorů uložených v paměti (pokud se vstup
nachází v oblasti atrakce některého ze vzorů).

• Aplikace Hopfieldovy sítě je omezena nejen nízkou kapacitou
paměti, ale také určitou nejistotou výsledku.

Hopfieldova síť

𝐸 = −
1

2
෍

𝑖,𝑗
𝑇𝑖,𝑗𝑆𝑖𝑆𝑗 − ෍

𝑖

𝜃𝑖𝑆𝑖

• První část rovnice představuje interakci mezi páry neuronů, kde
váhové koeficienty​ určují, jak moc je interakce mezi dvěma neurony
i a j silná a zda je tato interakce excitační (positivní váha) nebo
inhibiční (negativní váha).

• Druhá část rovnice zahrnuje prahy aktivace, které umožňují
neuronům změnit svůj stav i bez vstupu od ostatních neuronů.

Hopfieldova síť
• Energetická funkce má lokální minima v místech, kde jsou uloženy

vzpomínky (stavy naučené při trénování), ale také „fantomy“

Hopfieldova síť
• Při tvorbě Hopfieldovy sítě pro řešení optimalizačního problému je důležité

postupovat systematicky, aby bylo zajištěno, že síť efektivně modeluje a řeší
daný problém.

• Rozpoznání a specifikace problému: Definice optimalizačního problému k
řešení, včetně všech omezení a cílů.

• Reprezentace Hopfieldovy sítě
• Neurony: Každý neuron v síti reprezentuje část řešení problému. Musí být určeno, jak bude

struktura problému mapována na neurony v síti.

• Stav neuronů: Stavy neuronů (obvykle binární, tj. 0 nebo 1) reprezentují, zda je daná část
řešení zahrnuta nebo ne.

Hopfieldova síť
• Energetická funkce

• Definice energetické funkce: Energetická funkce je klíčem k modelování optimalizačního
problému jako procesu minimalizace energetického stavu sítě. Tato funkce by měla odrážet cíl
optimalizace a omezení problému.

• Penalizace nesplnění omezení: Energetická funkce by měla zahrnovat členy, které penalizují
řešení nesplňující omezení problému.

• Dynamika sítě
• Aktualizace neuronů: Definice pravidel pro aktualizaci stavů neuronů s cílem najít konfiguraci

minimalizující energetickou funkci. Aktualizace může být asynchronní nebo synchronní.

• Konvergence: Zavedení mechanismů zajišťujících, že síť konverguje k stabilnímu stavu, který
reprezentuje optimální nebo suboptimální řešení.

Hopfieldova síť
• Dekódování a validace řešení

• Dekódování řešení: Po dosažení stabilního stavu je nutné interpretovat stavy neuronů jako
řešení optimalizačního problému.

• Ověření řešení: Kontrola, zda dekódované řešení splňuje všechna omezení a je optimální nebo
přijatelně suboptimální.

• Experimenty a ladění sítě
• Adjustace parametrů: Experimenty s různými hodnotami parametrů sítě (např. váhy spojení,

parametry penalizace, prahy aktualizace) pro zlepšení výkonu a kvality řešení.

• Testování na různých instancích problému: Testování sítě na různých datech nebo instancích
problému pro ověření robustnosti a univerzálnosti sítě.

Řešení příkladů

Odezva perceptronu
• Výpočet odezvy je výpočet výstupu perceptronu (y) na vstupní vektor

Vypočítejte odezvu daného perceptronu s bipolární skokovou aktivační funkcí na vstup [x1, x2]

𝐖 =

𝑤0

𝑤1

𝑤2

Odezva perceptronu
• Výpočet odezvy je výpočet výstupu na vstupní vektor

1. Vypočítejte odezvu daného perceptronu s bipolární skokovou aktivační funkcí na
vstup [-2, 2]

𝐖 =

𝑤0

𝑤1

𝑤2

=
−0,5
0,5

−0,5

𝑦𝑎 = 1 ⋅ −0,5 + −2 ⋅ 0,5 + 2 ⋅ −0,5 = −0,5 − 1 − 1 = −2,5

𝑦𝑎 = −2,5 ≤ 0 → 𝒚 = −𝟏

Odezva perceptronu
• Výpočet odezvy je výpočet výstupu na vstupní vektor

2. Vypočítejte odezvu daného perceptronu s bipolární skokovou aktivační funkcí na
vstup [-1, -1]

𝐖 =

𝑤0

𝑤1

𝑤2

=
0
1

−1

𝑦𝑎 = 1 ⋅ 0 + −1 ⋅ 1 + −1 ⋅ −1 = 0 − 1 + 1 = 0

𝑦𝑎 = 0 ≤ 0 → 𝒚 = −𝟏

Odezva perceptronu
• Výpočet odezvy je výpočet výstupu na vstupní vektor

3. Vypočítejte odezvu daného perceptronu s bipolární skokovou aktivační funkcí na
vstup [1, 2]

𝐖 =

𝑤0

𝑤1

𝑤2

=
−1
−1
2

𝑦𝑎 = 1 ⋅ −1 + 1 ⋅ −1 + 2 ⋅ 2 = −1 − 1 + 4 = 2

𝑦𝑎 = 2 > 0 → 𝒚 = 𝟏

Hebbův zákon učení
• Pokud je hodnota vstupu do neuronu synchronní s očekávaným výstupem,

pak se váha spojení mezi příslušným vstupem a neuronem posiluje, pokud je
asynchronní (hodnoty nejsou shodné), váha se oslabuje.

• Matematicky toto lze v případě bipolárních vstupů a aktivační funkce zapsat
vztahem:

𝑤𝑖 = 𝑤𝑖 + 𝑥𝑖 ⋅ 𝑡,

 kde t je očekávaný výstup z neuronu

 xi je vstup

 wi je váha příslušného vstupu

Trénování perceptronu
• Mějme model perceptronu s bipolární skokovou aktivační funkcí a následující vzor

trénovací množiny. Trénování proveďte s pomocí Hebbova zákona učení.

1. Lze rovnou provést trénování aplikací přičtením výrazu 𝑥𝑖 ⋅ 𝑡 k aktuální váze 𝑤𝑖

𝐖 =

𝑤0

𝑤1

𝑤2

vz1: 𝒙 = 𝑥1, 𝑥2 , 𝑦 = 𝑡

Trénování perceptronu
• Mějme model perceptronu s bipolární skokovou aktivační funkcí a následující vzor

trénovací množiny. Trénování proveďte s pomocí Hebbova zákona učení.

1. Můžeme rovnou provést trénování

𝐖 =
−0,5
0,5

−0,5

vz1: 𝒙 = 1, 1 , 𝑡 = 1

𝐖 =
−0,5
0,5

−0,5
, 𝐖𝐧 =

−0,5 + 1 ⋅ 1
0,5 + 1 ⋅ 1

−0,5 + 1 ⋅ 1
=

0,5
1,5
0,5

Výsledné váhy

Trénování perceptronu
• Mějme model perceptronu s bipolární skokovou aktivační funkcí a následující vzor

trénovací množiny. Trénování proveďte s pomocí Hebbova zákona učení.

1. Můžeme rovnou provést trénování

𝐖 =
−1
0
1

vz1: 𝒙 = −2, 1 , 𝑡 = −1

𝐖 =
−1
0
1

, 𝐖𝐧 =
−1 + 1 ⋅ −1
0 + −2 ⋅ −1
1 + 1 ⋅ −1

=
−2
2
0

Výsledné váhy

Trénování perceptronu
• Mějme model perceptronu s bipolární skokovou aktivační funkcí a následující vzory

trénovací množiny. Trénování proveďte s pomocí Hebbova zákona učení.

1. Můžeme rovnou provést trénování

𝐖 =
−1
0
1

vz1: 𝒙 = −1, 1 , 𝑡 = −1

𝐖 =
−1
0
1

, 𝐖𝐧𝟏
=

−1 + 1 ⋅ −1
0 + −1 ⋅ −1
1 + 1 ⋅ −1

=
−2
1
0

→ 𝐖𝐧𝟐
=

−2 + 1 ⋅ 1
1 + 2 ⋅ 1

0 + −1 ⋅ 1
=

−1
3

−1

vz2: 𝒙 = 2, −1 , 𝑡 = 1

Výsledné váhy

Algoritmus chybového učení perceptronu
• Náhodně nastav váhy neuronu 𝐰, zvol koeficient rychlosti učení 𝛼.

• Dokud není splněna podmínka zastavení:
• Pro každý vstup z trénovací množiny:

• Spočítej výstupní hodnotu neuronu 𝑦.

• Spočítej chybu na výstupu 𝑒 = (𝑡 − 𝑦).

• Adaptuj práh neuronu dle vztahu 𝑤𝑖 = 𝑤0 + α ⋅ 𝑒

• Adaptuj váhy neuronu dle vztahu 𝑤𝑖 = 𝑤𝑖 + α ⋅ 𝑥𝑖 ⋅ 𝑒

Trénování perceptronu
• Mějme model perceptronu s bipolární skokovou aktivační funkcí a následující vzor

trénovací množiny. Trénování proveďte s pomocí chybového učení při 𝛼 = 1 .

1. Výpočet odezvy perceptronu na vstup [1, 1]

𝐖 =
−0,5
0,5

−0,5

vz1: 𝒙 = 1, 1 , 𝑡 = 1

𝑦𝑎 = 1 ⋅ −0,5 + 1 ⋅ 0,5 + 1 ⋅ −0,5 = −0,5 + 0,5 − 0,5 = −0,5

𝑦𝑎 = −0,5 < 0 → 𝒚 = −𝟏

Trénování perceptronu
• Mějme model perceptronu s bipolární skokovou aktivační funkcí a následující vzor

trénovací množiny. Trénování proveďte s pomocí chybového učení při 𝛼 = 1 .

2. Výpočet chyby perceptronu dle daného vzoru: vstup [1, 1], očekávaný výstup 1

𝐖 =
−0,5
0,5

−0,5

vz1: 𝒙 = 1, 1 , 𝑡 = 1

Odezva (viz krok 1) 𝑦 = −1

Chyba 𝑒 = 𝑡 − 𝑦 = 1 − −1 = 2

Trénování perceptronu
• Mějme model perceptronu s bipolární skokovou aktivační funkcí a následující vzor

trénovací množiny. Trénování proveďte s pomocí chybového učení při 𝛼 = 1 .

3. Aktualizace vah dle 𝑤𝑖 = 𝑤𝑖 + α ⋅ 𝑥𝑖 ⋅ 𝑒

𝐖 =
−0,5
0,5

−0,5

vz1: 𝒙 = 1, 1 , 𝑡 = 1

Chyba (viz krok 2) 𝑒 = 2

𝐖 =
−0,5
0,5

−0,5
, 𝐖𝐧 =

−0,5 + 1 ⋅ 2
0,5 + 1 ⋅ 2

−0,5 + 1 ⋅ 2
=

−1,5
2,5

−1,5
Výsledné váhy

Samoorganizační
mapy

Samoorganizační mapy
• Využívají kompetitivní učení.

• Jednotlivé výstupní neurony mezi sebou „soutěží“ o aktivitu.

• V aktuální časový okamžik je aktivní pouze jeden výstupní neuron.

Tato skupina neuronový sítí vychází ze 2 publikací:
• Willshaw, D.J., Von Der Malsburg, C. How patterned neural connections can be set

up by self organization (1976) Proceedings of the Royal Society of London -
Biological Sciences, 194 (1117), pp. 431-445. Cited 497 times.

• Kohonen, T. Self-organized formation of topologically correct feature maps (1982)
Biological Cybernetics, 43 (1), pp. 59-69. Cited 6008 times.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017166860&doi=10.1098%2frspb.1976.0087&partnerID=40&md5=ccff0eaa4b7e5a4845179d4316ecfb43
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017166860&doi=10.1098%2frspb.1976.0087&partnerID=40&md5=ccff0eaa4b7e5a4845179d4316ecfb43
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017166860&doi=10.1098%2frspb.1976.0087&partnerID=40&md5=ccff0eaa4b7e5a4845179d4316ecfb43
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020068152&doi=10.1007%2fBF00337288&partnerID=40&md5=7d7b7dbf6ea124f7f98e5d5b3e16bf80
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020068152&doi=10.1007%2fBF00337288&partnerID=40&md5=7d7b7dbf6ea124f7f98e5d5b3e16bf80

Willshaw
• Definoval základy pro samoorganizační mapy na základě pozorování

biologických procesů.
• Budeme hovořit o dvou dvourozměrných listech prvků, které mají představovat

presynaptický a postsynaptický list nervových buněk.

• Presynaptické elementy jsou schopny vyslat axony a vytvořit synapse s elementy
postsynaptického listu, čímž se vytvoří mapování mezi oběma listy.

Willshaw

Kohonenova samoorganizační mapa
• Jedná se o neznámější architekturou samoorganizačních map.

• Kromě vstupních terminálů má tato architektura pouze jednu vrstvu.

• Ta je označována jako kompetiční a bývá uspořádána do netriviální
struktury (zpravidla nějakého typu dvojrozměrné mřížky).

• Struktura určuje, které uzly spolu sousedí, což je důležité při učení.

Kohonenova samoorganizační mapa
Vlastnosti:

• Provádí shlukovou analýzu vstupních dat.

• Snahou nalézt prostorovou reprezentaci složitých datových struktur.

Topologie:
• Dvouvrstvá síť (vstupní vrstva a kompetiční vrstva) s úplným propojením mezi

vrstvami.

• Výstupní neurony jsou navíc uspořádány do nějaké topologické struktury
(dvourozměrná mřížka, jednorozměrná řada).

Topologie Kohonenovy mapy

wij

nxx
3

x
2

x
1

vstupy

kompetiční

vrstva

váhy

1 2 3 m

Topologie Kohonenovy mapy

Životní cyklus Kohonenovy mapy

Životní cyklus Kohonenovy mapy

Učení Kohonenovy mapy
Vzhledem k tomu, že spolu neurony výstupní vrstvy „soutěží“, tak je
třeba zvolit jaké kritérium definuje vítěze.

U Kohononovy mapy se jako toto kritérium volí vzdálenost vah neuronu
od vstupních hodnot.

Nicméně by i okolní neurony měli být aktuálním výstupem ovlivněny,
a proto se definuje okolí aktivního neuronu.

Pro učení je klíčová struktura Kohonenovy mapy spolu s okolím
neuronu.

Mřížky a okolí neuronu

Učení Kohonenovy mapy
• Během učení se Kohonenově mapě postupně předkládají hodnoty

vstupních dat a pro každý vstupní vektor vybere neuron J, který je
prostorově nejblíže vstupnímu vektoru.

• Následně se upraví váhy tohoto neuronu a také všech neuronů v jeho
okolí směrem ke vstupnímu vektoru, dle vztahu:

Učení Kohonenovy mapy

• Velikost okolí přitom není konstantní, ale během učení se snižuje.

• Počáteční hodnota okolí se volí tak, aby pokrývala asi polovinu všech
neuronů v kompetiční vrstvě.

• Doporučuje volit počáteční koeficient rychlosti učení α blízký 1 a postupně
ho během učení snižovat až na hodnotu blízkou nule.

• Smyslem vztahu a učení je, aby vítězný neuron, který nejlépe reprezentuje
aktuální vstup, ještě více zlepšil svou relativní pozici vůči němu.

Učení Kohonenovy mapy
1. Inicializuj váhy neuronu malými náhodnými čísly, definuj rychlostní konstantu α,

poloměr topologického sousedství R.

2. Dokud není splněno kritérium pro zastavení:

2.1 Pro každý vstup  
T

1 2, , ,nx x x=x z trénovacích dat

2.1.1 pro každé j = 1, …, m spočti:

()
2

1

()
n

ij i

i

D j w x
=

= −

2.1.2 Najdi index J takový, že D(J) je minimální.

2.1.3 Aktualizuj váhy všech neuronů, které jsou v topologickém sousedství

neuronu J vztahem:

()(1) () ()ij ij i ijw k w k x w k+ = + −

2.2 Aktualizuj parametr rychlosti učení a zmenši poloměr topologického

sousedství R.

2.3 Otestuj podmínku ukončení.

Vybavování Kohonenovy mapy
• Jakmile je Kohonenova mapa správně adaptována, je možné ji využít ke

shlukové analýze:
• Předložíme-li síti vstupní vektor, soutěží jednotlivé neurony o to, který z nich je vstupu

nejblíže.

• Tento neuron se pak aktivuje (výstup roven jedné), zatímco ostatní neurony zůstávají
pasivní (výstup roven nule). Každý neuron tak reprezentuje určitou množinu vstupních
dat, které jsou mu blízké.

• Algoritmus: Pro vstup  
T

1 2, , ,nx x x=x

pro každé j = 1, …, m spočti:

()
2

1

()
n

ij i

i

D j w x
=

= −

Najdi index J takový, že D(J) je minimální.

Výstupem je číslo aktivovaného neuronu J

Příklad
Míry lidí (boky, pas, hruď)

Zastoupeny modelky, muži, ženy (stáří 55-65 let)

Příklad
Ze zobrazení je zřejmé, že počet shluků m = 3.

Dále volme matici počátečních vah w. Rozměr 3 × 3 je dán jednak počtem
shluků a jednak rozměrem vstupních dat.

Příklad

Příklad

Příklad

Příklad

Příklad

Příklad

Příklad

Řešení příkladů
Diskrétní Hopfieldova síť

Kohonenova mapa

Cvičení
• Diskrétní Hopfieldova síť

• Učení Hopfieldovy sítě

• Vybavování Hopfieldovy sítě

• Kohonenova mapa
• Učení Kohonenovy mapy

• Vybavování Kohonenovy mapy

Učení Hopfieldovy sítě
• Aplikuje se Hebbův zákon učení

• Matice vah w je symetrická matice n x n, kde n je počet vstupů do
sítě, pro každý prvek matice w platí:

 kde S je počet vzorů trénovací množiny








=


= 

=

,0
1

jipro

jiproxx
w

s

k

kjki
ij

Vybavování Hopfieldovy sítě

1) yi(0) = xi i = 1 … n

2)

3) Krok 2) se opakuje do ustálení

() ()
1

1 1
n

j ij i

i

y k f w y k j n
=

 
+ = = 

 


Příklad 1
• Dva vzory k zapamatování

 
 1111

1111

2

1

−−=

−=

x

x








=


= 

=

,0
1

jipro

jiproxx
w

s

k

kjki
ij



















=

0

0

0

0

xxx

xxx

xxx

xxx

w

22221121112 =+= xxxxw

02321131113 =+= xxxxw 

















−−

−

−

=

0022

0000

2002

2020

w

...atd

Příklad 1

• Vybavování – 1. iterace

 1111 −−−=test

() ()
1

1 1
n

j ij i

i

y k f w y k j n
=

 
+ = = 

 




















−−

−

−

=

0022

0000

2002

2020

w

() () 14)1()2()1(012)1(01 ==−−+−++−= ffy

() () 10)1()2()1(010)1(22 ==−−+−++−= ffy

() () 10)1(0)1(010)1(03 ==−+−++−= ffy

() () 10)1(0)1(01)2()1()2(4 ==−+−+−+−−= ffy

Příklad 1

• Vybavování – 2. iterace

 1111=y

() ()
1

1 1
n

j ij i

i

y k f w y k j n
=

 
+ = = 

 




















−−

−

−

=

0022

0000

2002

2020

w

() () 101)2(1012101 ==−+++= ffy

() () 101)2(1010122 ==−+++= ffy

() () 10101010103 ==+++= ffy

() () 1410101)2(1)2(4 −=−=++−+−= ffy

Příklad 1

• Vybavování – 3. iterace

 1111 −=y

() ()
1

1 1
n

j ij i

i

y k f w y k j n
=

 
+ = = 

 




















−−

−

−

=

0022

0000

2002

2020

w

() () 14)1()2(1012101 ==−−+++= ffy

() () 14)1()2(1010122 ==−−+++= ffy

() () 10)1(01010103 ==−+++= ffy

() () 14)1(0101)2(1)2(4 −=−=−++−+−= ffy

Učení Kohonenovy mapy
1. Inicializuj váhy neuronu malými náhodnými čísly, definuj rychlostní konstantu α,

poloměr topologického sousedství R.

2. Dokud není splněno kritérium pro zastavení:

2.1 Pro každý vstup  
T

1 2, , ,nx x x=x z trénovacích dat

2.1.1 pro každé j = 1, …, m spočti:

()
2

1

()
n

ij i

i

D j w x
=

= −

2.1.2 Najdi index J takový, že D(J) je minimální.

2.1.3 Aktualizuj váhy všech neuronů, které jsou v topologickém sousedství

neuronu J vztahem:

()(1) () ()ij ij i ijw k w k x w k+ = + −

2.2 Aktualizuj parametr rychlosti učení a zmenši poloměr topologického

sousedství R.

2.3 Otestuj podmínku ukončení.

Vybavování Kohonenovy mapy
• Jakmile je Kohonenova mapa správně adaptována, je možné ji využít ke

shlukové analýze:
• Předložíme-li síti vstupní vektor, soutěží jednotlivé neurony o to, který z nich je vstupu

nejblíže.

• Tento neuron se pak aktivuje (výstup roven jedné), zatímco ostatní neurony zůstávají
pasivní (výstup roven nule). Každý neuron tak reprezentuje určitou množinu vstupních
dat, které jsou mu blízké.

• Algoritmus: Pro vstup  
T

1 2, , ,nx x x=x

pro každé j = 1, …, m spočti:

()
2

1

()
n

ij i

i

D j w x
=

= −

Najdi index J takový, že D(J) je minimální.

Výstupem je číslo aktivovaného neuronu J

Dopředná vícevrstvá
umělá neuronová síť

(ANN/FFNN)

Dopředná vícevrstvá umělá neuronová síť
• Je vhodná k řešení následujících problémů:

• Univerzální aproximace

• Kódování

• Predikce

• Rozpoznávání vzorů (klasifikace)

• Rozhodování

Dopředná vícevrstvá umělá neuronová síť
• Univerzální aproximace

• Spojitá funkce n proměnných muže být vyjádřena pomocí konečného
součtu funkcí jedné proměnné.

• Libovolná spojitá funkce muže být s požadovanou přesností
aproximovaná pomocí dopředné vícevrstvé umělé neuronové sítě s
jednou skrytou vrstvou.

• Postup tvorby FFNN jako univerzálního aproximátoru je experimentální a
vychází ze systematického postupu, kde provádíme:

• Hledání vhodné topologie sítě.

• Optimalizace parametru rychlosti učení α.

• Testování.

Dopředná vícevrstvá umělá neuronová síť
• Modelování a predikce

• Každý systém (používá se i termín proces, případně soustava) je možno
zobrazit jako blok, na který působí vstupní signály a případně poruchy a
jehož chování je možno sledovat na základe výstupních veličin

• Systém vykazuje 2 typy chování:
• Statické – závislost mezi signály v ustáleném tvaru – soustava algebraických rovnic

• Dynamické – popisuje chování systému v čase (v přechodovém stavu) – soustava
diferenciálních/diferenčních rovnic

• Pomocí NN lze takový systém modelovat následovně:
• Statické chování – aproximace nelineální funkce

• Dynamické chování – je závislá nejen ne aktuálních stavech, ale také na stavech
předchozích → prevedení modelu do diskrétního tvaru a definice vstupních a
výstupních proměnných → tvorba trénovací množiny dle předpokládaného modelu

Topologie FFNN
• Skládá se ze vstupní vrstvy, skrytých vrstev a výstupních vrstvev

• Vazby mezi neurony vedou pouze jedním směrem – dopředu.

𝐱 =

𝑥1
𝑥2

⋮
𝑥𝑅

𝐲 =

𝑦1
𝑦2

⋮
𝑦𝑄

R – počet vstupů
Q – počet výstupů
C – počet skrytých vrstev
k – pořadové číslo vrstvy

𝐖𝑘 =
𝑤01

𝑘 𝑤02
𝑘 …

𝑤11
𝑘 𝑤12

𝑘 …
⋮ ⋮ ⋱

Stavební blok FFNN
• FFNN je složena z formálních neuronů zapojených do vrstev.

Proces učení FFNN

𝐱 =

𝑥1
𝑥2

⋮
𝑥𝑅

𝐲 =

𝑦1
𝑦2

⋮
𝑦𝑄

𝐭 =

𝑡1
𝑡2

⋮
𝑡𝑄

x – vektor vstupních hodnot
y – vektor výstupních hodnot (řešení)
t – vektor očekávaných hodnot řešení

R – počet vstupů
Q – počet výstupů

𝑒 = ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘
2

𝐸 =
1

𝑁
 ෍

𝑖=1

𝑁

𝑒𝑖

Chyby u FFNN

Proces učení FFNN

N – počet vzorů
Q – počet výstupů

𝑒 = ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘
2

𝐸 =
1

𝑁
 ෍

𝑖=1

𝑁

𝑒𝑖

Chyby u FFNN

• ANN realizující součet a rozdíl dvou vstupů.

ANN
(UNS)

𝑥1

𝑥2

𝑦1

𝑦2

Vzor 𝒙𝟏 𝒙𝟐 𝒚𝟏 𝒚𝟐 𝒕𝟏 = 𝒙𝟏 + 𝒙𝟐 𝒕𝟐 = 𝒙𝟏 − 𝒙𝟐 𝒆

1. 2 5 6 -2 7 -3 2

2. 3 2 6 3 5 1 5

3. 7 5 11 2 12 3 2 𝐸 =
1

3
2 + 5 + 2 = 3

Optimalizace FFNN
• Optimalizace topologie (počet vrstev, počet neuronů v každé vrstvě,

volba aktivační funkce, …)

• Optimalizace vah a prahů (učení umělé neuronové sítě)

Učení umělé neuronové sítě
• Cílem je optimalizace vah a prahů pro zajištění požadované funkce UNS.

• Topologie UNS je definována.

• Je tedy třeba nastavit „správné“ hodnoty vah a prahů.

• Kvazi Newtonova metoda, Levenberův-Marquardtův algoritmus, …

• Algoritmus zpětného šíření chyby (Backpropagation Gradient Descent)

Algoritmus zpětného šíření chyby (BGD)
• Topologie FFNN je dána – 2 vrstvá FFNN (1 skrytá + 1 výstupní)

𝑍1

𝑍𝑗

𝑍𝑆

𝑌1

𝑌𝑘

𝑌𝑄

R – počet vstupů
Q – počet výstupů
S – počet neuronů ve skryté vrstvě

Hod. neuronů ve skryté 𝑍𝑗

Hod. agregační funkce označeny indexem 𝑖𝑛
Aktivační funkce označena 𝜙

Platí:

1 1

𝑥1

𝑥𝑖

𝑥𝑅

𝑦1

𝑦𝑘

𝑦𝑄

𝑣𝑖𝑗 𝑤𝑗𝑘

𝐕 𝐖

𝑦𝑖𝑛𝑘
= ෍

𝑗

𝑤𝑗𝑘𝑧𝑗

𝑦𝑘 = 𝜙 𝑦𝑖𝑛𝑘

Algoritmus zpětného šíření chyby (BGD)
• Cílem učení je minimalizovat chybu 𝑒 = σ𝑘=1

𝑄
𝑡𝑘 − 𝑦𝑘

2 změnou vah a
prahů jednotlivých neuronů, tzn. že hledáme minimum 𝑒 = 𝑓 𝒗, 𝒘

• Cílem je najít vhodné
přírůstky vah tak, aby
bylo nalezeno minimum
-> nalezení spádu funkce
(gradientu) -> derivace
chybové funkce

𝑤𝑗𝑘 = 𝑤𝑗𝑘 + ∆𝑤𝑗𝑘

𝑣𝑗𝑘 = 𝑣𝑗𝑘 + ∆𝑣𝑗𝑘

Algoritmus zpětného šíření chyby
• Odvození ∆𝑤𝑗𝑘 𝑍𝑗 𝑌𝑘𝑥𝑖 𝑦𝑘𝑣𝑖𝑗 𝑤𝑗𝑘

𝑒 = ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘
2

𝜕𝑒

𝜕𝑤𝑗𝑘
=

𝜕

𝜕𝑤𝑗𝑘
෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘
2 =

𝜕

𝜕𝑤𝑗𝑘
෍

𝑘=1

𝑄

𝑡𝑘 − 𝜙 𝑦𝑖𝑛𝑘

2
= −2 𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑤𝑗𝑘
𝜙 𝑦𝑖𝑛𝑘

=

= −2 𝑡𝑘 − 𝑦𝑘 𝜙′ 𝑦𝑖𝑛𝑘
𝑧𝑗 = −𝛿𝑘𝑧𝑗

Algoritmus zpětného šíření chyby
• Odvození ∆𝑣𝑖𝑗 𝑍𝑗 𝑌𝑘𝑥𝑖 𝑦𝑘𝑣𝑖𝑗 𝑤𝑗𝑘

𝜕𝑒

𝜕𝑣𝑖𝑗
=

𝜕

𝜕𝑣𝑖𝑗
෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘
2 = −2 ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑦𝑘 = −2 ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘 𝜙′ 𝑦𝑖𝑛𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑦𝑖𝑛𝑘

=

= − ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘 𝜙′ 𝑦𝑖𝑛𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑦𝑖𝑛𝑘

= − ෍

𝑘=1

𝑄

𝛿𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑦𝑖𝑛𝑘

= − ෍

𝑘=1

𝑄

𝛿𝑘𝑤𝑗𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑧𝑗 =

= − ෍

𝑘=1

𝑄

𝛿𝑘𝑤𝑗𝑘𝜙′ 𝑧𝑖𝑛𝑗
𝑥𝑖 = −𝛿𝑗 𝑥𝑖

Algoritmus zpětného šíření chyby
• Graficky se chyba propaguje následujícím způsobem

𝑍1

𝑍𝑗

𝑍𝑆

𝑌1

𝑌𝑘

𝑌𝑄

1 1

𝑥1

𝑥𝑖

𝑥𝑅

𝑦1

𝑦𝑘

𝑦𝑄

𝑣𝑖𝑗 𝑤𝑗𝑘

𝐕 𝐖

Algoritmus zpětného šíření chyby
• Potom

• Z principu algoritmu je třeba, aby všechny použité aktivační funkce
byly derivovatelné (hladké, často lineární a sigmoidální)

• 𝛼 se volí na intervalu (0; 1) metodou pokus-omyl

∆𝑤𝑗𝑘 = −𝛼
𝜕𝑒

𝜕𝑤𝑗𝑘
= 𝜶𝜹𝒌𝒛𝒋

∆𝑣𝑖𝑗 = −𝛼
𝜕𝑒

𝜕𝑣𝑖𝑗
= 𝜶𝜹𝒋𝒙𝒊

Vhodné aktivační funkce
• Vzhledem k aplikacím NN v nespojitém prostředí (digitální svět)

jsou běžně užívány numerické derivace (diferencovatelnost) a další
metody přibližně definující potřebné hodnoty

Celkový postup algoritmu učení
• Rozdělení dat na testovací, trénovací a validační množinu

• Nastavení vah a prahů sítě, nastavení koeficientu učení 𝛼

• Pro každou dvojici: vzor - očekávaný výstup,
• Spočítání odezvy sítě

• Spočítání 𝛿𝑘 pro všechny výstupní neurony

• Spočítání 𝛿𝑗 pro neurony skryté vrstvy

• Aktualizace vah a prahů

• Test ukončení algoritmu
• Maximální počet epoch

• Změna hodnoty účelové funkce dále neklesá

• Dosaženo kapacity sítě – výkon na validační množině se zhoršuje → přetrénování

Podmínka ukončení

Varianty učení ANN
• Online

• Po každém vzoru dojde k aktualizaci hodnot vah a prahů.

• Offline
• Změny vah a prahů se sčítají v dočasné proměnné a jejich aktualizace se

provede až na konci epochy trénování (po celé epoše).

• Dávkové (batch)
• Kombinuje předchozí varianty, kde se aktualizace provádí po dávkách vzorků

(většinou po 64, 32, 16, 8, 4 vzorech).

• Kombinuje výhody a nevýhody obou variant (kompromis rychlosti a
paměťové náročnosti)

Heuristiky vylepšující BGD
• Výběr varianty trénování (online, offline, batch)

• Vhodný výběr dat trénovací množiny
• Data způsobující velkou chybu

• Data rozdílná od předchozích

• Data normálně rozložená přes celou množinu

• Vhodná volba aktivační funkce

• Vhodná inicializace vah a prahů neuronů
• Velké hodnoty → malé gradienty → pomalá progrese

• Malé hodnoty → možnost dosažení sedlového bodu chybové funkce

• Snaha volit inicializační hodnoty způsobující největší změny (nelineární oblasti)

• Normalizace dat

Heuristiky vylepšující BGD
• Vhodný výběr dat trénovací množiny pokrývající daný problém kvůli

generalizaci

Optimalizace FFNN
• Optimalizace topologie (počet vrstev, počet neuronů v každé vrstvě,

volba aktivační funkce, …)

• Optimalizace vah a prahů (učení umělé neuronové sítě)

Optimalizace topologie FFNN
• Neexistuje analytický postup

• Počet vstupů a výstupů je dán problémem

• Počet skrytých vrstev

Optimalizace topologie FFNN
• Počet neuronů ve skrytých vrstvách

• Různá doporučení v literatuře, ze zkušeností u 1 vrstvé ANN:

• Metoda shora dolů

• Metoda zdola nahoru

𝑝 = 𝑅𝑄

Příklad
• Teplotní čidlo, které měří teplotu v rozsahu 0 – 500 °C

• Výstupem čidla je diskrétní číslo v rozsahu 0 – 1023

• Pomocí kalibrace chceme navrhnou ANN, která výstup čidla bude
transformovat (kódovat) na teplotu měřeného objektu

Příklad
• Zisk trenovací, testovací a validační množiny

• Experiment (měření) s etalonem

Příklad
• Transformace (normalizace) dat

Příklad
• Rozdělení dat - zisk trénovací, testovací a validační množiny

Příklad
• Jedná se spojitý průběh → uvažujme 1 skrytou vrstvu

• Trénování pro různé topologie

→ Více než 2 neurony ve skryté vrstvě
nevedou k razantnímu zlepšení

Testování:

Příklad
• Použití sítě

Metody učení
neuronových sítí

Učení umělé neuronové sítě
• Cílem je optimalizace vah a prahů pro zajištění požadované funkce UNS.

• Topologie UNS je definována.

• Je tedy třeba nastavit „správné“ hodnoty vah a prahů.

• Kvazi Newtonova metoda, Levenberův-Marquardtův algoritmus, …

• Algoritmus zpětného šíření chyby (Backpropagation Gradient Descent)

Algoritmus zpětného šíření chyby (BGD)
• Topologie FFNN je dána – 2 vrstvá FFNN (1 skrytá + 1 výstupní)

𝑍1

𝑍𝑗

𝑍𝑆

𝑌1

𝑌𝑘

𝑌𝑄

R – počet vstupů
Q – počet výstupů
S – počet neuronů ve skryté vrstvě

Hod. neuronů ve skryté 𝑍𝑗

Hod. agregační funkce označeny indexem 𝑖𝑛
Aktivační funkce označena 𝜙

Platí:

1 1

𝑥1

𝑥𝑖

𝑥𝑅

𝑦1

𝑦𝑘

𝑦𝑄

𝑣𝑖𝑗 𝑤𝑗𝑘

𝐕 𝐖

𝑦𝑖𝑛𝑘
= ෍

𝑗

𝑤𝑗𝑘𝑧𝑗

𝑦𝑘 = 𝜙 𝑦𝑖𝑛𝑘

Algoritmus zpětného šíření chyby (BGD)
• Cílem učení je minimalizovat chybu 𝑒 = σ𝑘=1

𝑄
𝑡𝑘 − 𝑦𝑘

2 změnou vah a
prahů jednotlivých neuronů, tzn. že hledáme minimum 𝑒 = 𝑓 𝒗, 𝒘

• Cílem je najít vhodné
přírůstky vah tak, aby
bylo nalezeno minimum
-> nalezení spádu funkce
(gradientu) -> derivace
chybové funkce

𝑤𝑗𝑘 = 𝑤𝑗𝑘 + ∆𝑤𝑗𝑘

𝑣𝑗𝑘 = 𝑣𝑗𝑘 + ∆𝑣𝑗𝑘

Algoritmus zpětného šíření chyby
• Odvození ∆𝑤𝑗𝑘 𝑍𝑗 𝑌𝑘𝑥𝑖 𝑦𝑘𝑣𝑖𝑗 𝑤𝑗𝑘

𝑒 = ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘
2

𝜕𝑒

𝜕𝑤𝑗𝑘
=

𝜕

𝜕𝑤𝑗𝑘
෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘
2 =

𝜕

𝜕𝑤𝑗𝑘
෍

𝑘=1

𝑄

𝑡𝑘 − 𝜙 𝑦𝑖𝑛𝑘

2
= −2 𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑤𝑗𝑘
𝜙 𝑦𝑖𝑛𝑘

=

= −2 𝑡𝑘 − 𝑦𝑘 𝜙′ 𝑦𝑖𝑛𝑘
𝑧𝑗 = −𝛿𝑘𝑧𝑗

Algoritmus zpětného šíření chyby
• Odvození ∆𝑣𝑖𝑗 𝑍𝑗 𝑌𝑘𝑥𝑖 𝑦𝑘𝑣𝑖𝑗 𝑤𝑗𝑘

𝜕𝑒

𝜕𝑣𝑖𝑗
=

𝜕

𝜕𝑣𝑖𝑗
෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘
2 = −2 ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑦𝑘 = −2 ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘 𝜙′ 𝑦𝑖𝑛𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑦𝑖𝑛𝑘

=

= − ෍

𝑘=1

𝑄

𝑡𝑘 − 𝑦𝑘 𝜙′ 𝑦𝑖𝑛𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑦𝑖𝑛𝑘

= − ෍

𝑘=1

𝑄

𝛿𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑦𝑖𝑛𝑘

= − ෍

𝑘=1

𝑄

𝛿𝑘𝑤𝑗𝑘

𝜕

𝜕𝑣𝑖𝑗
𝑧𝑗 =

= − ෍

𝑘=1

𝑄

𝛿𝑘𝑤𝑗𝑘𝜙′ 𝑧𝑖𝑛𝑗
𝑥𝑖 = −𝛿𝑗 𝑥𝑖

Algoritmus zpětného šíření chyby
• Graficky se chyba propaguje následujícím způsobem

𝑍1

𝑍𝑗

𝑍𝑆

𝑌1

𝑌𝑘

𝑌𝑄

1 1

𝑥1

𝑥𝑖

𝑥𝑅

𝑦1

𝑦𝑘

𝑦𝑄

𝑣𝑖𝑗 𝑤𝑗𝑘

𝐕 𝐖

Algoritmus zpětného šíření chyby
• Potom

• Z principu algoritmu je třeba, aby všechny použité aktivační funkce
byly derivovatelné (hladké, často lineární a sigmoidální)

• 𝛼 se volí na intervalu (0; 1) metodou pokus-omyl

∆𝑤𝑗𝑘 = −𝛼
𝜕𝑒

𝜕𝑤𝑗𝑘
= 𝜶𝜹𝒌𝒛𝒋

∆𝑣𝑖𝑗 = −𝛼
𝜕𝑒

𝜕𝑣𝑖𝑗
= 𝜶𝜹𝒋𝒙𝒊

Vhodné aktivační funkce
• Vzhledem k aplikacím NN v nespojitém prostředí (digitální svět)

jsou běžně užívány numerické derivace (diferencovatelnost) a další
metody přibližně definující potřebné hodnoty

Celkový postup algoritmu učení
• Rozdělení dat na testovací, trénovací a validační množinu

• Nastavení vah a prahů sítě, nastavení koeficientu učení 𝛼

• Pro každou dvojici: vzor - očekávaný výstup,
• Spočítání odezvy sítě

• Spočítání 𝛿𝑘 pro všechny výstupní neurony

• Spočítání 𝛿𝑗 pro neurony skryté vrstvy

• Aktualizace vah a prahů

• Test ukončení algoritmu
• Maximální počet epoch

• Změna hodnoty účelové funkce dále neklesá

• Dosaženo kapacity sítě – výkon na validační množině se zhoršuje → přetrénování

Učení umělé neuronové sítě
• Kvazi Newtonova metoda

• Založena na aproximaci Hessianovy matice bez nutnosti jejího výpočtu nebo inverze.

• Metoda aktualizuje aproximaci Hessianovy matice (nebo její inverze) na základě
gradientu cílové funkce a rozdílů mezi po sobě jdoucími iteracemi.

• Pro aktualizaci se často používá Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Učení umělé neuronové sítě
• Levenberův-Marquardtův algoritmus (LMA)

• Algoritmus kombinuje metody nejmenších čtverců a gradientního sestupu.

• Je zvláště užitečný pro problémy, kde je počet měření větší než počet neznámých.

• (typické při trénování neuronových sítí s omezeným počtem parametrů a velkým
množstvím dat)

• LMA upravuje Jacobiho matici přidáním diagonální matice, čímž zvyšuje její stabilitu a
usnadňuje inverzi.

• Tento přístup umožňuje algoritmu efektivně přecházet mezi směrem největšího poklesu
a kvadratickou konvergencí.

Učení umělé neuronové sítě
• Levenberův-Marquardtův algoritmus (LMA)

Učení umělé neuronové sítě
• ADAM algoritmus (Adaptive Moment Estimation)

• Adaptivní optimalizační metoda gradientního sestupu, která se stala velmi populární pro
trénování hlubokých neuronových sítí.

• ADAM kombinuje dvě klíčové techniky

• Momentum (setrvačnost) – Zahrnuje informace o předchozích gradientech k urychlení sestupu
a zabránění oscilací.

• Adaptivní učení – Dynamicky upravuje learning rate (rychlost učení) pro každý parametr zvlášť
na základě historie gradientů.

Učení umělé neuronové sítě
• ADAM algoritmus (Adaptive Moment Estimation)

Učení umělé neuronové sítě
• Každá z metod má své specifické využití a optimální použití závisí na

konkrétním problému a struktuře dat.

• Kvazi-Newtonovy metody jsou vhodné pro problémy s malým až středním
množstvím parametrů, kde je výpočet nebo aproximace Hessianovy matice
proveditelný.

• Levenberg-Marquardtův algoritmus exceluje v problémech
transformovatelných na optimalizaci pomocí nejmenších čtverců.

• Zpětné šíření chyby je jednoduchým algoritmem, implementovatelným pro
většinu neuronových sítí.

Podmínka ukončení trénování - přetrénování

Varianty učení ANN
• Online

• Po každém vzoru dojde k aktualizaci hodnot vah a prahů.

• Offline
• Změny vah a prahů se sčítají v dočasné proměnné a jejich aktualizace se

provede až na konci epochy trénování (po celé epoše).

• Dávkové (batch)
• Kombinuje předchozí varianty, kde se aktualizace provádí po dávkách vzorků

(většinou po 64, 32, 16, 8, 4 vzorech).

• Kombinuje výhody a nevýhody obou variant (kompromis rychlosti a
paměťové náročnosti)

Výpočty BGD s FFNN

Výpočet odezvy FFNN
• Odezvu FFNN lze počítat obdobně jako u jednoduchého perceptronu s

tím rozdílem, že se signál propaguje dál sítí, takže se výpočty postupně
provádí dokud není dosaženo konkrétní výstupní hodnoty.

𝒚 = 𝐭𝐚𝐧𝐡 𝒚𝒂 𝒚 = 𝒚𝒂

Výpočet odezvy FFNN
• Je patrné, že:

 𝐖1 =
0,8 0,3

−0,1 1,2
 𝐖2 =

−0,1 0,2
0,4 0,3

−0,4 0,8

Výpočet odezvy FFNN
• Pro vzor x = 0,25, počteme odezvu následovně:

 𝐖1 =
0,8 0,3

−0,1 1,2
 𝐖2 =

−0,1 0,2
0,4 0,3

−0,4 0,8

𝑦𝑎
1 = 𝐖1 𝑇 ⋅ 𝑦0 = 𝐖1 𝑇 ⋅

1
𝑥

=
0,8 −0,1
0,3 1,2

⋅
1

0,25
=

0,8 − 0,1 ⋅ 0,25
0,3 + 1,2 ⋅ 0,25

=
0,775
0,600

𝑦1 = tanh 𝑦𝑎
1 =

0,649
0,537

Výpočet odezvy FFNN

 𝐖1 =
0,8 0,3

−0,1 1,2
 𝐖2 =

−0,1 0,2
0,4 0,3

−0,4 0,8
 𝑦1 = tanh 𝑦𝑎

1 =
0,649
0,537

𝑦𝑎
2 = 𝐖𝟐 𝑇

⋅ 𝑦1 =
−0,1 0,4 −0,4
0,2 0,3 0,8

⋅
1

0,649
0,537

=
−0,0549

0,8246

𝑦2 = 𝑦𝑎
2 =

−0,0549
0,8246

Výpočet BGD pro FFNN
• Pro učení je nejprve vypočítat odezvu FFNN, poté je třeba určit chybu a

provézt výpočty a aktualizace vah. Pro vzor x = 0,25, t =
0,45
−0,2

𝒚 = 𝐭𝐚𝐧𝐡 𝒚𝒂 𝒚 = 𝒚𝒂

Výpočet BGD pro FFNN

x = 0,25, t =
0,45
−0,2

 𝐖1 =
0,8 0,3
0,1 1,2

 𝐖2 =
−0,1 0,2
0,4 0,3

−0,4 0,8
 𝑦 =

−0,0549
0,8246

𝑒 =
𝑒1

𝑒2
=

𝑡1 − 𝑦1
𝑡2 − 𝑦2

=
0,45 − −0,0549

−0,2 − 0,8246
=

0,5049
−1,0246

• Derivace lineární identické funkce je 1, takže

 𝛿1
2 = 𝑒1 ⋅ 𝜙′ 𝑦𝑎1

2 = 𝑒1 ⋅ 1 = 𝑒1 = 0,5049

 𝛿2
2 = 𝑒2 ⋅ 𝜙′ 𝑦𝑎2

2 = 𝑒2 ⋅ 1 = 𝑒2 = −1,0246

𝛿1
2

𝛿2
2

Výpočet BGD pro FFNN

• Derivace hyperbolicko-tangenciální funkce je: 𝝓𝒌′
𝒚𝒂𝒋

𝒌 = 𝟏 − 𝝓𝒌 𝒚𝒋
𝒌 𝟐

, takže

𝜙1′
𝑦𝑎1

1 = 𝜙1′
0,775 = 1 − 0,6492 = 0,5777

𝜙1′
𝑦𝑎2

1 = 𝜙1′
0,600 = 1 − 0,5372 = 0,7116

tanh 𝑦𝑎
1 =

0,649
0,537

𝛿1
1

𝛿2
1

Výpočet BGD pro FFNN

• Derivace hyperbolicko-tangenciální funkce je: 𝝓𝒌′
𝒚𝒂𝒋

𝒌 = 𝟏 − 𝒚𝒋
𝒌 𝟐

, takže

𝛿1
1 = 𝜙1′

𝑦𝑎1
1 ෍

𝑙=1

2

𝛿𝑙
2 ⋅ 𝑤1𝑙

2 = 0,5777 0,5049 ⋅ 0,4 + −1,0246 ⋅ 0,3 = −0,0609

𝛿2
1 = 𝜙1′

𝑦𝑎2
1 ෍

𝑙=1

2

𝛿𝑙
2 ⋅ 𝑤2𝑙

2 = −0,7270

𝛿1
1

𝛿2
1

Výpočet BGD pro FFNN

• Lokální gradienty jsou vypočítané, nyní lze přistoupit k zpětnému šíření chyby

𝐖1 =
0,8 0,3
0,1 1,2

 𝐖2 =
−0,1 0,2
0,4 0,3

−0,4 0,8

𝛿1
2 = 0,5049; 𝛿2

2 = −1,0246

Δw01
2 = 𝛼𝛿1

2𝑦0
1 = 0,1 ⋅ 0,5049 ⋅ 1 = 0,0505

w01
2 = w01

2 + Δw01
2 = −0,1 + 0,0505 = −0,0495

Δw11
2 = 𝛼𝛿1

2𝑦1
1 = 0,1 ⋅ 0,5049 ⋅ 0,649 = 0,0328

w11
2 = w11

2 + Δw11
2 = 0,4 + 0,0328 = 0,4328

Výpočet BGD pro FFNN

• Lokální gradienty jsou vypočítané, nyní lze přistoupit k zpětnému šíření chyby

𝐖1 =
0,8 0,3
0,1 1,2

 𝐖2 =
−0,1 0,2
0,4 0,3

−0,4 0,8
𝛿1

1 = −0,0609
𝛿2

1 = −0,7270

Δw01
1 = 𝛼𝛿1

1𝑦0
0 = 0,1 ⋅ −0,0609 ⋅ 1 = −0,0061

w01
1 = w01

1 + Δw01
1 = 0,8 − 0,0061 = 0,7939

Δw11
1 = 𝛼𝛿1

1𝑦1
0 = 0,1 ⋅ −0,0609 ⋅ 0,25 = −0,0015

𝛿1
1

𝛿2
1

Metody stanovení
topologie FFNN

Optimalizace FFNN
• Optimalizace topologie (počet vrstev, počet neuronů v každé vrstvě,

volba aktivační funkce, …)

• Optimalizace vah a prahů (učení umělé neuronové sítě)

Optimalizace topologie FFNN
• Neexistuje analytický postup

• Počet vstupů a výstupů je dán problémem

• Počet skrytých vrstev

Optimalizace topologie FFNN
• Počet neuronů ve skrytých vrstvách

• Různá doporučení v literatuře, ze zkušeností u 1 vrstvé ANN:

• Metoda shora dolů

• Metoda zdola nahoru

𝑝 = 𝑅𝑄

Řešení problémů
pomocí FFNN

Dopředná vícevrstvá umělá neuronová síť
• Je vhodná k řešení určitých typů problémů:

• Aproximace / regrese

• Nahrazení lokálního funkčního předpisu funkce jeho přibližným vyjádřením pomocí
funkce. Účelem je snížení výpočetní náročnosti. Zjednodušení probíhá na úkor
přesnosti.

• Libovolná spojitá funkce muže být s požadovanou přesností aproximovaná pomocí
dopředné vícevrstvé umělé neuronové sítě.

• Modelování a predikce

• Každý systém je možno zobrazit jako blok (model), na který působí vstupní signály a
případně poruchy a jehož chování je možno sledovat na základe výstupních veličin

• Rozpoznávání vzorů a klasifikace

• Rozpoznávání vzorů a jejich třídění do příslušných tříd.

• Rozhodování

Dopředná vícevrstvá umělá neuronová síť
Úloha Typ výstupu Výstupní neurony Aktivační funkce Význam výstupu

Regrese
Reálné číslo (např.
23.5)

1 Žádná (lineární výstup) Predikovaná hodnota

Binární klasifikace Pravděpodobnost (0–1) 1 Sigmoid
Příslušnost ke kladné
třídě

Klasifikace více tříd
Vektor
pravděpodobností
(např. [0.1, 0.7, 0.2])

n tříd Softmax
Rozdělení
pravděpodobností,
součet = 1

Multilabel klasifikace
Vektor nezávislých
pravděpodobností

n labelů Sigmoid (nezávisle)
P(ke každému labelu
zvlášť), bez nutnosti
součtu

Klasifikace s
prahováním

Binární hodnota (0
nebo 1)

1 nebo n
Sigmoid + threshold
(např. 0.5)

Rozhodnutí na základě
pravděpodobnosti (>
práh)

Experimenty s neuronovými sítěmi
• Stanovení metodiky (stanovení cíle, předzpracování dat, volba

topologie, kolik experimentů, jak budou testovány výsledky)

• Naměření/získání datasetu (dat k trénování, dat popisující chování,
které chceme modelovat, dat popisujících skupiny, které chceme
shlukovat/rozdělovat) a jeho úprava

• Jednotlivé experimenty s NN – vždy provádět učení minimálně z 10
různých počátečních podmínek pro výběr nejvhodnějšího modelu

• Při hledání vhodné topologie daného typu NN se běžně používají
porovnávání výsledků na testovací množině

Dopředná vícevrstvá umělá neuronová síť
• Modelování a predikce – Příklad Soustava pro řízení otáček

• Dynamiku je vhodné testovat na celém rozsahu (přes celou statickou charakteristiku)

Dopředná vícevrstvá umělá neuronová síť
• Modelování a predikce – Příklad Soustava pro řízení otáček

Dopředná vícevrstvá umělá neuronová síť
• Modelování a predikce – Příklad Soustava pro řízení otáček

• Pro potřeby identifikace často určujeme řád modelu, poté provádíme optimalizace
samotného počtu neuronů ve skryté vrstvě

Dopředná vícevrstvá umělá neuronová síť
• Modelování a predikce – Příklad Soustava pro řízení otáček

• Provedeme testování a při splnění požadovaného chování určíme NN model

Binární klasifikace
• Příklad na detekci spamu

• Vstupní proměnné
• Většinou numerické reprezentace slov (např. TF-IDF, word embedding, bag-of-words).

• Počet vstupů může být od desítek po tisíce podle velikosti slovníku.

• Výstup:
• nespam vs. spam

• v praxi reprezentováno jedním neuronem se sigmoid aktivací (1 = spam) nebo dvěma neurony se
softmax.

Binární klasifikace
• Příklad na detekci spamu

Zpráva Features
Pravděpodobnost
spamu/nespamu

Předzpracování

Skryté vrstvy

Binární klasifikace
• Příklad na detekci spamu

Zpráva Features

Pravděpodobnost
spamu

Předzpracování

Pravděpodobnost
nespamu

Skryté vrstvy

Klasifikace a rozpoznávání vzorů
• Příklad na klasifikaci kosatců - výška/šířka kališního/okvětního lístku

Klasifikace a rozpoznávání vzorů
• Příklad na klasifikaci kosatců - výška/šířka kališního/okvětního lístku

• Nešlo by druh kosatce určit lépe?

• Pravděpodobnost příslušnosti k dané třídě – aktivační funkce softmax

FFNN
výška/šířka

kališního/okvětního
lístku

číslo
Funkce

1

0

-1

0,5

- 0,5

1

0

-1

Klasifikace a rozpoznávání vzorů
• Klasifikace obrazových dat

• Přímé zpracování pomocí FFNN (pixel po pixelu)

• Užití předzpracování obrazu pro extrakci klíčových vlastností
• Detekce hran

• Extrakce vlastností pomocí histogramů orientovaných gradientů

• Využití konvolučních neuronových sítí

Klasifikace a rozpoznávání vzorů
• Klasifikace obrazových dat

• Přímé zpracování pomocí FFNN (pixel po pixelu)

Klasifikace a rozpoznávání vzorů
• Klasifikace obrazových dat

• Přímé zpracování pomocí FFNN (pixel po pixelu)
• Topologie je využívá tzv. serializace vstupu, to znamená, že ze vstupní obrazové matice

pospojuje jednotlivé řádky nebo sloupce do jednoho vektoru.

• Vnitřní topologie odpovídá standardní vícevrstvé neuronové síti a výstupní vrstva
obsahuje počet neuronů odpovídající počtu klasifikačních tříd

Klasifikace a rozpoznávání vzorů
• Užití předzpracování obrazu pro extrakci klíčových vlastností

• Motivace – člověk je instinktivně schopen určit důležitou část obrazu
(oddělit pozadí od sledovaného objektu), stroj sám o sobě nedisponuje
takovou schopností – je potřeba mu klíčové informace „zvýraznit“

Klasifikace a rozpoznávání vzorů
• Detekce hran – gradient

• Prakticky je definiční obor jasové funkce diskrétní, gradient
vypočítáme pomocí diferencí jasové funkce

• Častou jsou implementovány tzv. masky zvýrazňující přechody
(hrany)

• Roberts, Prewitt, Sobel, …

Klasifikace a rozpoznávání vzorů
• Po vynásobení masky skrze obrázek dochází obecně k filtraci, v

případě vhodných masek pak k zvýraznění určitých vlastností
(typicky hran)

Klasifikace a rozpoznávání vzorů
• Př. Originální a zašuměný obrázek

Klasifikace a rozpoznávání vzorů
• Př. Box filtr

Klasifikace a rozpoznávání vzorů
• Př. Gausův filtr – běžně je použitá mat. funkce násobící každý

pixel, nicméně se dá aproximovat do podoby masky

Klasifikace a rozpoznávání vzorů
• Př. Matice pro Prewittův a Sobelův operátor a Laplacián

Klasifikace a rozpoznávání vzorů
• Příklad aplikace Robetsova operátoru

Klasifikace a rozpoznávání vzorů
• Pomocí metod detekce hran, lze použít přímo detekované

hrany nebo vstupní obrazová data upravit a použít takto vzniklé
obrázky obdobně jako při klasifikaci s FFNN

Klasifikace a rozpoznávání vzorů
• Extrakce vlastností pomocí histogramů orientovaných gradientů

• Zobecnění detekce hran

• Tvar a vzhled objektu je možné charakterizovat pomocí gradientu
jasové funkce

• Výsledkem je informace o dominantních tvarech v obrazu

Data Předzpracování
Výpočet

gradientu
HOGs

Klíčové
příznaky

Extrakce vlastností pomocí HOGs

Data Předzpracování
Výpočet

gradientu
HOGs

Klíčové
příznaky

Extrakce vlastností pomocí HOGs

Data Předzpracování
Výpočet

gradientu
HOGs

Klíčové
příznaky

Extrakce vlastností pomocí HOGs

Data Předzpracování
Výpočet

gradientu
HOGs

Klíčové
příznaky

Extrakce vlastností pomocí HOGs

Data Předzpracování
Výpočet

gradientu
HOGs

Klíčové
příznaky

Magnitudy jednotlivých pixelů
přiřazuji s danou váhou do

příslušných skupin úhlů gradientu

Vektor klíčových vlastností

Extrakce vlastností pomocí HOGs

Data Předzpracování
Výpočet

gradientu
HOGs

Klíčové
příznaky

Metriky pro hodnocení
neuronových sítí

Metriky pro hodnocení neuronových sítí
• Klíčové je rozdělení datasetu – metriky se hodnotí nad testovacími daty

• Jednotlivé metody je potřeba vždy porovnávat na stejné testovací množině

• Rozdělení je běžně 70:15:15 (trénování:validace:testování)

• Vyhodnocení modelu se vždy provádí pouze nad testovacím datasetem

• !Pozor neplést s nejnižší možnou trénovací chybou → je pravděpodobné, že pokud
není model přeučen, tak s nižší chybou bude lépe performovat i na testovací sadě

Metriky pro hodnocení neuronových sítí
• Podle řešeného problému se aplikují metriky pro hodnocení

neuronových sítí.

• Metriky související s regresí a modelováním:
• Jejich použití je jednoduché. Na testovací množině se aplikuje konkrétní

metrika, která určuje přesnost modelu.

• Střední kvadratická chyba
• Nejoblíbenější metrikou používanou pro regresní problémy. V podstatě zjišťuje

průměrnou kvadratickou chybu mezi předpovídanou a skutečnou hodnotou.

• Střední absolutní chyba
• Zjišťuje průměrnou absolutní vzdálenost mezi předpovídanou a cílovou hodnotou.

Metriky pro hodnocení neuronových sítí
• Podle řešeného problému se aplikují metriky pro hodnocení

neuronových sítí.

• Metriky související s klasifikací:
• Klasifikace je jedním z nejpoužívanějších problémů strojového učení s

různými průmyslovými aplikacemi, od rozřazování do skupin podle
vlastností, rozpoznávání obličejů, kategorizace videí (např. na YouTube),
moderování obsahu, lékařské diagnostiky až po klasifikaci textu (detekci
nenávistných projevů na Twitteru).

• Klasifikační metriky používají základní hodnocení, zda predikce odpovídá
příslušnosti do dané třídy nebo nikoli.

• Jsou rozlišována 4 hodnocení: TP, FP, FN, TN

Metriky pro hodnocení neuronových sítí
• Jsou rozlišována 4 hodnocení: TP, FP, FN, TN

• TP – True Positive

• Predikovaná třída je shodná s třídou daného vzorku testovací množiny.

• FP – False Positive

• Byla přiřazena třída, která ovšem neměla být přiřazena.

• FN – False Negative

• Nebyla přiřazena třída, která měla být přiřazena.

• TN – True Negative

• Značí výskyty ostatních tříd, které správně nebyly detekovány.

Metriky pro hodnocení neuronových sítí
• Jsou rozlišována 4 hodnocení: TP, FP, FN, TN – Graficky pomocí tzv.

confusion matrix (matice záměn).

Predikovaná třída

Ano Ne

Reálná třída
Ano TP FN

Ne FP TN

Metriky pro hodnocení neuronových sítí

Výpočty BGD s FFNN

Výpočty BGD s FFNN

• Mějme takto definovanou síť, kterou chceme naučit odčítání vstupů

𝒚 = 𝐭𝐚𝐧𝐡 𝒚𝒂 𝒚 = 𝒚𝒂

𝒙𝟏

𝒙𝟐

𝐖1 𝐖2

𝒚

Výpočty BGD s FFNN

𝐖1 =
0,1 0,2
0,5 −0,3

−0,4 0,8
 𝐖2 =

0,05
0,7

−0,6

• Mějme takto definovanou síť, kterou chceme naučit odčítání vstupů

𝒚 = 𝐭𝐚𝐧𝐡 𝒚𝒂 𝒚 = 𝒚𝒂

𝒙𝟏

𝒙𝟐

𝒚

1 1

𝑥1 = 1
𝑥2 = 0,5

𝑡 = 0,5

Výpočty BGD s FFNN

𝐖1 =
0,1 0,2
0,5 −0,4

−0,3 0,8
 𝐖2 =

0,05
0,7

−0,6

• Mějme takto definovanou síť, kterou chceme naučit odčítání vstupů

𝒚 = 𝐭𝐚𝐧𝐡 𝒚𝒂 𝒚 = 𝒚𝒂

𝒙𝟏

𝒙𝟐

𝒚

1 1

𝑥1 = 1
𝑥2 = 0,5

𝑡 = 0,5

𝑧1 = 0,1 + 0,5 ⋅ 𝑥1 − 0,3 ⋅ 𝑥2 = 0,45; 𝑎1 = tanh 0,45 = 0,421

𝑧2 = 0,2 − 0,4 ⋅ 𝑥1 + 0,8 ⋅ 𝑥2 = 0,2; 𝑎2 = tanh 0,2 = 0,197

Výpočty BGD s FFNN

𝐖1 =
0,1 0,2
0,5 −0,4

−0,3 0,8
 𝐖2 =

0,05
0,7

−0,6

• Mějme takto definovanou síť, kterou chceme naučit odčítání vstupů

𝒚 = 𝐭𝐚𝐧𝐡 𝒚𝒂 𝒚 = 𝒚𝒂

𝒙𝟏

𝒙𝟐

𝒚

1 1

𝑥1 = 1
𝑥2 = 0,5

𝑡 = 0,5

𝑧1 = 0,1 + 0,5 ⋅ 𝑥1 − 0,3 ⋅ 𝑥2 = 0,45; 𝑎1 = tanh 0,45 = 0,421

𝑧2 = 0,2 − 0,4 ⋅ 𝑥1 + 0,8 ⋅ 𝑥2 = 0,2; 𝑎2 = tanh 0,2 = 0,197
𝑦 = 0,05 + 0,7 ⋅ 𝑎1 − 0,6 ⋅ 𝑎2 = 0,227

Výpočty BGD s FFNN

𝐖1 =
0,1 0,2
0,5 −0,4

−0,3 0,8
 𝐖2 =

0,05
0,7

−0,6

• Mějme takto definovanou síť, kterou chceme naučit odčítání vstupů

• Uvažujme kvadratickou chybu

𝒚 = 𝐭𝐚𝐧𝐡 𝒚𝒂 𝒚 = 𝒚𝒂

𝒙𝟏

𝒙𝟐

𝒚

1 1

𝑥1 = 1
𝑥2 = 0,5

𝑡 = 0,5

𝑧1 = 0,1 + 0,5 ⋅ 𝑥1 − 0,3 ⋅ 𝑥2 = 0,45; 𝑎1 = tanh 0,45 = 0,421

𝑧2 = 0,2 − 0,4 ⋅ 𝑥1 + 0,8 ⋅ 𝑥2 = 0,2; 𝑎2 = tanh 0,2 = 0,197
𝑦 = 0,05 + 0,7 ⋅ 𝑎1 − 0,6 ⋅ 𝑎2 = 0,227

𝐸 =
1

2
𝑡 − 𝑦 2,

𝜕𝐸

𝜕𝑦
=

1

2
⋅ 2 𝑡 − 𝑦 ⋅ −1 = 𝑦 − 𝑡

𝜕𝐸

𝜕𝑦
= 0,227 − 0,5 = −0,273

Výpočty BGD s FFNN

𝐖1 =
0,1 0,2
0,5 −0,4

−0,3 0,8
 𝐖2 =

0,05
0,7

−0,6

• Mějme takto definovanou síť, kterou chceme naučit odčítání vstupů

• Gradient pro výstupní váhy

𝒚 = 𝐭𝐚𝐧𝐡 𝒚𝒂 𝒚 = 𝒚𝒂

𝒙𝟏

𝒙𝟐

𝒚

1 1

𝑥1 = 1
𝑥2 = 0,5

𝑡 = 0,5

𝑧1 = 0,45; 𝑎1 = tanh 0,45 = 0,421

𝑧2 = 0,2; 𝑎2 = tanh 0,2 = 0,197
𝑦 = 0,227

𝜕𝐸

𝜕𝑦
= 0,227 − 0,5 = −0,273

𝜕𝐸

𝜕𝑤𝑖
2 =

𝜕𝐸

𝜕𝑦
⋅ 𝑎𝑖

𝜕𝐸

𝜕𝑤1
2 = −0,273 ⋅ 0,421 = −0,115

𝜕𝐸

𝜕𝑤0
2 = −0,273 ⋅ 1

𝜕𝐸

𝜕𝑤2
2 = −0,273 ⋅ 0,197 = −0,054

Výpočty BGD s FFNN

𝐖1 =
0,1 0,2
0,5 −0,4

−0,3 0,8
 𝐖2 =

0,05
0,7

−0,6

• Mějme takto definovanou síť, kterou chceme naučit odčítání vstupů

• Gradient pro váhy skryté vrstvy

𝒚 = 𝐭𝐚𝐧𝐡 𝒚𝒂 𝒚 = 𝒚𝒂

𝒙𝟏

𝒙𝟐

𝒚

1 1

𝑥1 = 1
𝑥2 = 0,5

𝑡 = 0,5

𝑧1 = 0,45; 𝑎1 = tanh 0,45 = 0,421

𝑧2 = 0,2; 𝑎2 = tanh 0,2 = 0,197
𝑦 = 0,227

𝜕𝐸

𝜕𝑦
= 0,227 − 0,5 = −0,273

𝜕𝐸

𝜕𝑧𝑖
=

𝜕𝐸

𝜕𝑦
⋅ 𝑤𝑖

2 ⋅
𝑑

𝑑𝑧
tanh(𝑧)

𝜕𝐸

𝜕𝑧1
1 = −0,273 ⋅ 0,7 ⋅ 1 − 0,4212 = −0,157

𝜕𝐸

𝜕𝑧2
1 = −0,273 ⋅ −0,6 ⋅ 1 − 0,1972 = 0,157

𝑑

𝑑𝑧
tanh(𝑧) = 1 − tanh2 𝑧

0,823

0,961

Výpočty BGD s FFNN

𝐖1 =
0,1 0,2
0,5 −0,4

−0,3 0,8
 𝐖2 =

0,05
0,7

−0,6

• Mějme takto definovanou síť, kterou chceme naučit odčítání vstupů

• Gradient pro váhy skryté vrstvy

𝒚 = 𝐭𝐚𝐧𝐡 𝒚𝒂 𝒚 = 𝒚𝒂

𝒙𝟏

𝒙𝟐

𝒚

1 1

𝑥1 = 1
𝑥2 = 0,5

𝑡 = 0,5

𝑧1 = 0,45; 𝑎1 = tanh 0,45 = 0,421

𝑧2 = 0,2; 𝑎2 = tanh 0,2 = 0,197
𝑦 = 0,227

𝜕𝐸

𝜕𝑦
= 0,227 − 0,5 = −0,273

𝜕𝐸

𝜕𝑤𝑖𝑗
1 =

𝜕𝐸

𝜕𝑧𝑖
⋅ 𝑥𝑖

𝜕𝐸

𝜕𝑤11
1 = −0,157 ⋅ 𝑥1 = −0,157

𝜕𝐸

𝜕𝑤01
1 = −0,157

𝜕𝐸

𝜕𝑤21
1 = −0,157 ⋅ 𝑥2 = −0,0785

+ výpočet pro váhy z 2 neuronu skryté vrsty

Výpočty BGD s FFNN

𝐖1 =
0,1 0,2
0,5 −0,4

−0,3 0,8
 𝐖2 =

0,05
0,7

−0,6

• Mějme takto definovanou síť, kterou chceme naučit odčítání vstupů

• Vypočtené gradienty vah se pak přičtou vynásobené koef. Rychlosti
učení k původním vahám

Implementace

FFNN v pyTorch

Úvod do PyTorch

• Instalace přes pip (pip install torch)

• https://pytorch.org/docs/stable/nn.html

• PyTorch – tensor
• torch.Tensor = základní datová struktura

• Podobné jako NumPy pole, ale může běžet na GPU

import torch

a = torch.tensor([[1., 2.], [3., 4.]])
b = torch.rand(2, 2)

print(a + b)

https://pytorch.org/docs/stable/nn.html

Tvorba modelu

• nn.Module
• Základní třída všech modelů v PyTorch

• Obsahuje
• konstruktor __init__() – kde se definují vrstvy

• metodu forward() – definuje výpočetní tok (tzv. forward pass)

import torch
import torch.nn as nn

class MLP(nn.Module):
 def __init__(self):
 super().__init__()
 self.fc1 = nn.Linear(4, 10) # Vstupní vrstva: 4 -> 10
 self.relu = nn.ReLU()
 self.fc2 = nn.Linear(10, 3) # Výstupní vrstva: 10 -> 3

 def forward(self, x):
 x = self.relu(self.fc1(x))
 return self.fc2(x)

Tvorba modelu

• Více vrstev → schopnost modelovat složitější nelinearity

• Aktivace umožňují nelineární transformace → bez nich by síť byla jen
lineární mapa

• ReLU – rychlá, standardní volba (většina moderních sítí)

• Tanh – symetrická, používá se méně často

• Sigmoid – u binární klasifikace
class DeepMLP(nn.Module):
 def __init__(self):
 super().__init__()
 self.net = nn.Sequential(
 nn.Linear(4, 32),
 nn.Tanh(),
 nn.Linear(32, 16),
 nn.ReLU(),
 nn.Linear(16, 3)
)

 def forward(self, x):
 return self.net(x)

Tvorba modelu

• Regularizace
• Dropout: náhodně vypíná některé neurony během tréninku → zabraňuje přeučení

• BatchNorm: stabilizuje výstupy z vrstev → urychluje trénink, snižuje kolísání

class RegularizedMLP(nn.Module):
 def __init__(self):
 super().__init__()
 self.model = nn.Sequential(
 nn.Linear(4, 64),
 nn.BatchNorm1d(64),
 nn.ReLU(),
 nn.Dropout(0.3),
 nn.Linear(64, 3)
)

 def forward(self, x):
 return self.model(x)

Datasety

• TensorDataset: jednoduchý obal nad (x, y)

• Používáme, pokud máme data v NumPy nebo pandas

from sklearn.datasets import load_iris
from torch.utils.data import TensorDataset

iris = load_iris()
X = torch.tensor(iris.data, dtype=torch.float32)
y = torch.tensor(iris.target, dtype=torch.long)

dataset = TensorDataset(X, y)

Datasety

• Dělení dat:
• random_split(dataset, [train, val]) – náhodně rozdělí

• Subset + indexy – umožní přesnější dělení (např. stratifikaci)

from torch.utils.data import random_split

train_ds, val_ds = random_split(dataset, [120, 30])

from sklearn.model_selection import train_test_split
from torch.utils.data import Subset

idx_train, idx_val = train_test_split(range(len(dataset)), test_size=0.2, stratify=y)
train_ds = Subset(dataset, idx_train)
val_ds = Subset(dataset, idx_val)

Datasety

• DataLoader(dataset, batch_size, shuffle, num_workers)

• Vytváří dávky a iteruje přes ně

• batch_size – kolik vzorků v jednom kroku

• shuffle=True – promíchá data mezi epocha

• minum_workers – paralelní načítání (funguje mimo Windows)

from torch.utils.data import DataLoader

train_loader = DataLoader(train_ds, batch_size=16, shuffle=True)
val_loader = DataLoader(val_ds, batch_size=32)

Konvoluční neuronová síť
(CNN)

Problémy zpracování obrazu
• Klasifikace – zařazení vstupního obrázku do příslušné třídy

• Lokalizace – nalezení objektu ve vstupním obrázku

• Detekce – souběžná lokalizace a klasifikace

• Segmentace – rozdělení vstupního obrázku na segmenty
• Sémantická – každý pixel je přiřazen do určité třídy

• Instanční – označuje pixely odpovídající jednotlivým instancím objektu

Problémy zpracování obrazu
• Klasifikace – zařazení vstupního obrázku do příslušné třídy

• Lokalizace – nalezení objektu ve vstupním obrázku

• Detekce – souběžná lokalizace a klasifikace

• Segmentace – rozdělení vstupního obrázku na segmenty

Konvoluční neuronová síť – myšlenka
• Typicky člověk vybírá v datech specifické příznaky – hrany, tvary, barvy

• V datech se obecně nacházejí vzory (vlastnosti) definující dané objekty

• Tyto vzory mohou být různých velikostí a různě umístěné v datech

• → návrh skupiny detektorů, které procházejí zpracovávaná data

• Jednotlivé části dat mohou být kódovány stejným detektorem
(stejným způsobem)

Konvoluční neuronová síť – myšlenka

Konvoluční neuronová síť - úvod
• Jednotlivé detektory jsou realizované pomocí konvoluční vrstvy

• Konvoluční vrstva je představovaná skupinou filtrů provádějících
operaci konvoluce

Vstupy Výstupy

Filtry

„pařát“ detektor
„zobák“ detektor

…

Konvoluční neuronová síť – konvoluce
• 1 konvoluční vrstva je tvořena definovaným počtem filtrů, které

detekují vzory definované velikosti (velikost jádra), váhy filtrů jsou
získány trénováním.

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

Obrázek
6x6

Filtr 1 (3x3)

Filtr n (3x3)

-1 1 -1

-1 1 -1

-1 1 -1

Konvoluční neuronová síť – konvoluce
• Pro každý pixel aplikujeme skalární součin konvolučního filtru s

vstupem a získáváme výstupní hodnotu tvořící matici příznaků

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

3

Filtr 1 (3x3)

px [0; 0] = 1*1 + 0*-1 + … + 0*-1 + 1*1 = 3

Konvoluční neuronová síť – konvoluce
• Pro každý pixel aplikujeme skalární součin konvolučního filtru s

vstupem a získáváme výstupní hodnotu tvořící matici příznaků

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

3 -1

Filtr 1 (3x3)

Stride = 1 (po kolika pixelech brát další blok)

Konvoluční neuronová síť – konvoluce
• Pro každý pixel aplikujeme skalární součin konvolučního filtru s

vstupem a získáváme výstupní hodnotu tvořící matici příznaků

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

3 -1 -3

Filtr 1 (3x3)

Stride = 1 (po kolika pixelech brát další blok)

Konvoluční neuronová síť – konvoluce
• Pro každý pixel aplikujeme skalární součin konvolučního filtru s

vstupem a získáváme výstupní hodnotu tvořící matici příznaků

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

Filtr 1 (3x3)

Konvoluční neuronová síť – konvoluce
• Matice příznaků určuje, kde se v původním obrázku vyskytují

dominantní příznaky shodné s těmi ve filtru

• Určuje, kde v obrázku jsou přítomné dané tvary

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

Filtr 1 (3x3)

Matice příznaků – filtr 1

Konvoluční neuronová síť – konvoluce
• Matice příznaků určuje, kde se v původním obrázku vyskytují

dominantní příznaky shodné s těmi ve filtru

• Určuje, kde v obrázku jsou přítomné dané tvary

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

-1 1 -1

-1 1 -1

-1 1 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Filtr n (3x3)

Matice příznaků – filtr n

Konvoluční neuronová síť – konvoluce
• Aplikací všech filtrů pak dochází k zisku mapy příznaků

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

Obrázek
6x6

Filtr 1 (3x3)

Filtr n (3x3)

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Mapa příznaků
jednotlivé matice
příznaku za sebou

Konvoluční neuronová síť – konvoluce
• Padding (vyplňování) vs. Normálně – dochází ke snížení velikosti

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

Obrázek 6x6

1 -1 -1

-1 1 -1

-1 -1 1

3
Filtr 1 (3x3)

Matice příznaků 4x4

Konvoluční neuronová síť – konvoluce
• Padding = Same – Zachování velikosti obrazu

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

Obrázek 6x6 + výplň (celkem 8x8)

1 -1 -1

-1 1 -1

-1 -1 1

3

Filtr 1 (3x3)

Matice příznaků 6x6

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

Konvoluční neuronová síť – konvoluce
• U barevného obrázku (RGB) se provádí pro každý kanál

• Ziskem jsou mapy příznaků (dominantních vlastnosti vstupních dat)
Obrázek 6x6x3 (RGB)

1 -1 -1

-1 1 -1

-1 -1 1

Filtr 1 (3x3)

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

2 3 0 0 0 1

1 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

2 3 0 0 0 1

1 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

Mapa příznaků 6x6x3

Konvoluční neuronová síť – motivace
• Konvoluční vrstva „sama“ extrahuje klíčové vlastnosti

• Konvoluční vs. plně propojená vrstva

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1
3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

1

0

0

1

2

36

3

-1

1

-1

1

0

Konvoluční neuronová síť – motivace
• Konvoluční vrstva není plně propojená (neuron ve skryté vrstvě –

příznak je definován počtem vah odpovídající velikosti filtru)

• Dále dochází ke sdílení vah – ještě méně parametrů

• FFNN a CNN se stejným počtem neuronů má méně vah k učení

CNN – Klasifikace

Konvoluční neuronová síť – struktura
• CNN je obecně složená z konvolučních, pooling, flatten, a dense (plně

propojených) vrstev

Konvoluční neuronová síť – struktura
• Pooling vrstvy sjednocují skupinu vlastností a vybírají jen tu nejvíce

dominantní – max pooling vybírá maximální hodnotu, snižují velikost

Konvoluční neuronová síť – topologie
• Jednotlivé CNN se skládají z párů Conv + MaxPooling

• Samotných topologií CNN je velké množství a návrh samotné
topologie je již značně komplexní

• Běžnou inženýrskou praktikou je výběr z již existujících topologií
vhodných pro řešení daného problému

V
st

u
p

n
í

C
o

n
v

M
ax

 P
o

o
lin

g

C
o

n
v

M
ax

 P
o

o
lin

g

Fl
at

te
n

V
ýs

tu
p

n
í

FF
N

N

Konvoluční neuronová síť – topologie
• Jednotlivé CNN se skládají z párů Conv + MaxPooling

Konvoluční neuronová síť – vyhodnocení
• K vyhodnocení klasifikačních úloh se používá Confusion Matrix

(Matice záměn)

Konvoluční neuronová síť – historie
• 1959 - Simple and Complex Cells - David Hubel and Torsten Wiesel

• Zkoumali lidské zrakovém ústrojí a navrhli, že existují určité druhy
buněk, které člověk využívá při rozpoznávání vzorů.

• Simple cell (S-Buňka) reaguje na hrany a pruhy určité orientace v
daném perceptivním poli.

• Complex cell (C-Buňka) také reaguje na hrany a pruhy určité
orientace, ale od jednoduché buňky se liší tím, že tyto hrany a pruhy
mohou být na scéně posunuty a buňka bude stále reagovat.

https://en.wikipedia.org/wiki/David_H._Hubel
https://en.wikipedia.org/wiki/Torsten_Wiesel

Konvoluční neuronová síť – historie
• 1980 - Neocognitron - Kunihiko Fukushima

• Neocognitron: A Self-organizing Neural Network Model for a Mechanism of
Pattern Recognition Unaffected by Shift in Position.

• Model zahrnuje komponenty
označované jako S-buňky a C-
buňky realizující matematické
operace.

• Celkovou myšlenkou je zachytit
koncept "od jednoduchého ke
složitému" a přeměnit jej na
výpočetní model pro
rozpoznávání vizuálních vzorů.

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf

Konvoluční neuronová síť – historie
• 1980 - Neocognitron - Kunihiko Fukushima

Konvoluční neuronová síť – historie
• 1998 - LeNet - Yann LeCun

• Gradient-Based Learning Applied to Document Recognition

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

Konvoluční neuronová síť – historie
• 2009 – IMAGENET – Fei-Fei Li & Team

• První rozsáhlý dataset (1000 tříd; 1,3 milionu obrázků) vyzívající k soutěžení v
klasifikaci obrazových dat mezi výzkumníky

• Díky soutěžení vznikají návrhy nových topologií klíčových pro rozvoj aplikace
neuronových sítí pro zpracování obrazu

• 2012 – AlexNet – Alex Krizhevsky
• ReLu aktivační funkce, velký počet filtrů v konvolučních vrstvách

• Paralelní trénování architektury

• Augmentace dat

• Zavedení Dropout vrstvy – nastavení výstupu neuronů s určitou
pravděpodobností na hodnotu 0. (Omezení vzájemných vztahů neuronů →
neuron se nemůže spoléhat na přítomnost jiných neuronů)

https://www.image-net.org/challenges/LSVRC/
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Konvoluční neuronová síť – historie
• 2012 – AlexNet – Alex Krizhevsky

• Překrývající se části z Pooling vrstev

https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Konvoluční neuronová síť – historie
• 2013 – ZFNet – Zeiler and Fergus

• Založený na AlexNet, ale měnící nastavení
jednotlivých vrstev

• 2014 – VGGNet – Visual Geometry Group
• Přineslo hlubší architekturu CNN, která

dosahovala nižší chybovosti v soutěži na
datasetu ImageNet.

• Nová filozofie – zvětšením hloubky lze
modelovat více nelinearit ve funkci →
zohledňování hloubky jako kritické složky při
návrhu topologie.

https://arxiv.org/abs/1409.1556

Konvoluční neuronová síť – historie
• 2014 – GoogLeNet

• Trend zvětšování hloubky sítě, ale bez použití plně propojených vrstev (12x méně
parametrů než u AlexNet, 28x méně parametrů než u VGG)

• Zavedení „inception“ modulu - cílem je aproximovat optimální lokální struktur CNN.
Umožňuje použít v jednom bloku více velikostí filtrů, místo abychom byli omezeni na
jednu velikost filtru, které pak spojíme a předáme další vrstvě.

https://arxiv.org/abs/1409.4842

Konvoluční neuronová síť – porovnání

https://www.semanticscholar.org/paper/An-Analysis-of-Deep-Neural-Network-Models-for-Canziani-Paszke/9a786d1ecf77dfba3459a83cd3fa0f1781bbcba4

CNN – Detekce

Konvoluční neuronová síť – detekce
• Základní přístup pro detekci objektů v obraze je použití klasifikátoru

na tzv. pohyblivé okno (slidding window)

• Uvažují se tzv. ohraničující obdélníky pro detekci pozice objektu

Konvoluční neuronová síť – vyhodnocení
• K vyhodnocení detekčních úloh se používá metrika IoU - Intersecion

over Union

Konvoluční neuronová síť – R-CNN
• 2014 – R-CNN

• 2 Fázový detektor (přistupuje k problému rozdělením na fáze)

• Projde obrázek CNN a určí návrh oblasti zájmu, pak každý návrh projde sítí pro klasifikaci

https://arxiv.org/pdf/1504.08083

Konvoluční neuronová síť – Fast R-CNN
• 2015 – Fast R-CNN

• Kombinuje 2 fáze → Jednou projet obrázek CNN + až potom řešit jednotlivé regiony

• Postup detekce:
• Celý vstupní obrázek projde jednou hlubokou CNN (např. VGG-16). Výstup = Feature mapa (popis obrázku).

• Na feature mapě se aplikují tzv. Region Proposal Regions (RoIs) — oblasti, kde by mohly být objekty

• Pro každý RoI: Použije se speciální vrstva → RoI Pooling: Převzorkuje fixní velikosti (např. 7×7). (Pro FFNN)

• Výstup z RoI Poolingu jde do plně propojené vrstvy (klasifikační head).

https://arxiv.org/pdf/1504.08083

Konvoluční neuronová síť – YOLO
• 2016 – YOLOv1

• You Only Look Once – Přináší nový přístup kombinující fáze z 2 fázových detektorů

• Obraz se rozdělí na 7×7 (v originále) buněk a každá buňka předpovídá několik
bounding boxů včetně pravděpodobnosti, že tam objekt je, a klasifikaci do tříd.

https://arxiv.org/pdf/1506.02640v5

Konvoluční neuronová síť – YOLO
• 2018 – YOLOv3

• Navazuje na v2, s vylepšením díky využití tzv. „anchor boxů“ místo bounding boxů

Bounding box

• Výsledný obdélník kolem objektu. Vzniká po výpočtu/predikci modelu.

Anchor Box

• Předdefinované tvary boxů, které model používá jako „startovní šablony“ pro predikci bounding boxů.

• Využití více úrovní map příznaků

• Použití „multi-scale“ přístupu (tři úrovně detekce) → lepší detekce menších obj.

• Počátek zavádění tzv. „páteřních“ sítí (Backbone)
• Část modelu, která extrahuje feature mapy.

• Typicky předtrénovaná na ImageNet (klasifikace).

• Detektor pak přidává jen „hlavičku“ (head) pro detekci objektů.

https://arxiv.org/pdf/1804.02767

Konvoluční neuronová síť – YOLO
• YOLO, YOLOv8

• Rozšíření zaměřující se zejména na zlepšení přesnosti a udržení real-time inference

• Přechod pod Open-source platformu Ultralytics

• Různé implementace + snadné vlastní implementace (PyTorch, připravené skripty)

• Různé velikosti sítě (U, S, M, L, X)

• Testování a optimalizace backbone

• Pokročilá augmentace pro zlepšení schopnosti generalizovat

https://docs.ultralytics.com/models/
https://yolov8.com/

Konvoluční neuronová síť – porovnání

CNN – Segmentace

Segmentace obrazových dat
• Pokročilejší metoda, přiřazující třídu (label) jednotlivým pixelům

• Instanční vs Sémantická

Segmentace obrazových dat – užití
• Medical imaging, Self-driving cars, Remote Sensing

Segmentace pomocí CNN
• Konvoluční vrstvy produkují výstupní data – zpracované obrázky

Segmentace pomocí CNN
• U segmentace vyžadujeme na výstupu označený obrázek.

• Modely založené na principu Enkodér-Dekodér nebo Auto-Enkodér.

• Jsou založené na vlastnosti konvolučních sítí kódovat vstupní
informaci (obrázek).

Segmentace pomocí CNN
• Enkodér-Dekodér schéma – postupné kódování vlastností obrázku a

následné jeho postupné dekódování pro vygenerování
segmentovaného obrázku

Segmentace pomocí CNN
• Skip spojení – přenášejí určité klíčové vlastnosti mezi enkodérem a

dekodérem v dané hloubce

Segmentace pomocí CNN
• UpSampling vrstva – zvětšuje původní rozměr vstupu

• Metody: replikace, průměrování, Unpooling

Segmentace pomocí CNN
• UpSampling vrstva – zvětšuje původní rozměr vstupu

• Metody: replikace, průměrování, Unpooling

Segmentace pomocí CNN
• UpSampling vrstva – zvětšuje původní rozměr vstupu

• Metody: replikace, průměrování, Unpooling

Segmentace pomocí CNN – architektury
• SegNet

https://arxiv.org/pdf/2001.05566.pdf
https://arxiv.org/abs/1511.00561

Segmentace pomocí CNN – architektury
• U-Net

https://arxiv.org/pdf/2001.05566.pdf
https://arxiv.org/abs/1505.04597

Segmentace pomocí CNN – architektury
• FCN – Fully Convolutional Network

https://arxiv.org/pdf/2001.05566.pdf
https://arxiv.org/abs/1411.4038

Segmentace pomocí CNN – architektury
• Pyramid Network modely

https://arxiv.org/pdf/2001.05566.pdf
https://arxiv.org/abs/1612.01105

Segmentace pomocí CNN – architektury
• Mask R-CNN

• Objekty jsou klasifikovány a lokalizovány pomocí ohraničujícího boxu a sémantické
segmentace, která klasifikuje každý pixel do daných kategorií. Každá oblast zájmu
dostane segmentační masku.

https://arxiv.org/pdf/2001.05566.pdf

Segmentace pomocí CNN – architektury
• Segmentační úloha vede k zisku nového obrázku, který nemusí

zachycovat pouhé přiřazení do třídy, ale může vytvářet nový obrázek

• GANs - Generative Adversarial Networks
• Generování kreslených postaviček

• Stárnutí obličeje

• Vybarvování obrázků

https://arxiv.org/pdf/2001.05566.pdf
https://arxiv.org/abs/1406.2661
https://github.com/mnicnc404/CartoonGan-tensorflow
https://github.com/ZZUTK/Face-Aging-CAAE
https://github.com/jantic/DeOldify

Datasety
• Datasety jsou nedílnou součástí při práci s neuronovými sítěmi.

• V obrazovém zpracování mohou vstupní obrázky nabývat 2D, 2.5D
(RGB+D), 3D rozměrů.

• Podle dané úlohy existují různé datasety, na kterých se provádí
testování vlastních topologií vzhledem k ostatním. Přehledné shrnutí
dostupných datasetů bylo např. popsáno v článku z 2020.

• Kromě vytvořených „obecných“ datasetů je ale často pro specifickou
úlohu vytvořit datasety vlastní.

• Vytvoření obrázků trénovací a testovací množiny.

• Ruční označení dat (zisk tzv. ground truth) - bounding boxy, labelling pro
segmentaci (přehled 2022), vlastní označování (vlastní aplikace)

https://arxiv.org/pdf/2001.05566.pdf
https://www.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html
https://www.v7labs.com/blog/best-image-annotation-tools

Augmentace
• Vlastní datasety jsou často vytvořeny z několika stovek, tisíců

obrázků, které nepokrývají dostačující část pro správné natrénování
neuronové sítě.

• Pomocí augmentace můžeme dataset uměle rozšířit (původní
obrázky orotovat, ztmavit, posunout, …)

• Použití více dat pro trénování vede k lepší generalizaci sítě.

• Tensorflow Data Generator

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator

Průmyslová aplikace

Úkol – klasifikace výrobků

• Pečivo; kontrola kvality

OK NOK

Úkol – klasifikace výrobků

• Pečivo; kontrola kvality

OK Špatná
barva

Něco
navíc

Nedokonalý
tvar

Úkol – klasifikace výrobků

OK Špatná
barva

Něco
navíc

Nedokonalý
tvar

Úkol – klasifikace výrobků

• Podmínky:
• Přesnost (Accuracy, Precision, Recall)

• Výpočetní náročnost

• Na jakém datasetu?

Úkol – klasifikace výrobků

• Dataset:
• OK – 1896 vzorků

• Špatná barva – 512 vzorků

• Něco navíc – 632 vzorků

• Nedokonalý tvar – 1860 vzorků

Úkol – klasifikace výrobků

• Pro trénovaní je třeba rozdělit (70:15:15):
• OK – 1327 Train, 284 Val, 285 Test

• Špatná barva – 358 Train, 76 Val, 78 Test

• Něco navíc – 442 Train, 94 Val, 96 Test

• Nedokonalý tvar – 1302 Train, 279 Val, 279 Test

Úkol – klasifikace výrobků

• Návrh neuronového modelu
• Vstupní velikost obrázků

• Normalizace dat

• Použití konvolučních a pooling vrstev

• Dropout vrstva

• Plně propojené vrstvy

• Výstupní vrstva

• Chybová funkce a trénovací algoritmus

Vytvořeno v rámci projektu Green Deal UPCE, reg. č. NPO_UPCE_MSMT-2142/2024-4.

Toto dílo podléhá licenci Creative Commons BY-SA 4.0. Pro zobrazení licenčních podmínek

navštivte https://creativecommons.org/licenses/by-sa/4.0/.

https://creativecommons.org/licenses/by-sa/4.0/

	Snímek 1
	Snímek 2
	Snímek 3: Úvod
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13: Co je AI?
	Snímek 14: Co je AI?
	Snímek 15: Co je AI?
	Snímek 16: Vývoj, pokroky a „doby ledové“
	Snímek 17: Vývoj, pokroky a „doby ledové“
	Snímek 18: Vývoj, pokroky a „doby ledové“
	Snímek 19: Vývoj, pokroky a „doby ledové“
	Snímek 20: Vývoj, pokroky a „doby ledové“
	Snímek 21: Vývoj, pokroky a „doby ledové“
	Snímek 22: Vývoj, pokroky a „doby ledové“
	Snímek 23: Důvody pro „doby ledové“ a pokroky AI
	Snímek 24: Data?
	Snímek 25: Typy učení v AI
	Snímek 26: Typy učení v AI
	Snímek 27: Typy učení v AI
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40: Lineární algebra
	Snímek 41: Základy vektorů
	Snímek 42: Základy vektorů
	Snímek 43: Základy vektorů
	Snímek 44: Základy matic
	Snímek 45: Základy matic
	Snímek 46: Základy matic
	Snímek 47: Základy matic
	Snímek 48: Základy matic
	Snímek 49: Základy matic
	Snímek 50: Základy tenzorů
	Snímek 51: Základy tenzorů
	Snímek 52: Základy tenzorů
	Snímek 53: Základy tenzorů
	Snímek 54: NumPy
	Snímek 55: Použití knihovny NumPy
	Snímek 56: Použití knihovny NumPy
	Snímek 57: Použití knihovny NumPy
	Snímek 58: Použití knihovny NumPy
	Snímek 59: Použití knihovny Matplotlib
	Snímek 60: Použití knihovny Matplotlib
	Snímek 61: Použití knihovny Matplotlib
	Snímek 62: Použití knihovny Matplotlib
	Snímek 63: Použití knihovny Matplotlib
	Snímek 64: Použití knihovny Matplotlib
	Snímek 65: Perceptron
	Snímek 66: Model perceptronu
	Snímek 67: Model perceptronu
	Snímek 68: Využití perceptronu
	Snímek 69: Odezva perceptronu
	Snímek 70: Hebbův zákon učení
	Snímek 71: Algoritmus chybového učení perceptronu
	Snímek 72: Vzorový příklad – třídění chipsů
	Snímek 73: Vzorový příklad – třídění chipsů
	Snímek 74: Vzorový příklad – třídění chipsů
	Snímek 75: Vzorový příklad – třídění chipsů
	Snímek 76: Vzorový příklad – třídění chipsů
	Snímek 77: Hebbův zákon učení
	Snímek 78: Algoritmus chybového učení perceptronu
	Snímek 79: Vzorový příklad – třídění chipsů
	Snímek 80: Vzorový příklad – třídění chipsů
	Snímek 81: Vzorový příklad – třídění chipsů
	Snímek 82: Vzorový příklad – třídění chipsů
	Snímek 83: Vzorový příklad – kvalita sušenek
	Snímek 84: Vzorový příklad – kvalita sušenek
	Snímek 85: Formální model neuronu
	Snímek 86
	Snímek 87
	Snímek 88
	Snímek 89
	Snímek 90: Rozdílnost akt. funkcí – chování výstupu
	Snímek 91: Celkový postup algoritmu učení
	Snímek 92: Proč provádět validaci?
	Snímek 93: Varianty učení ANN
	Snímek 94: Umělá neuronová síť
	Snímek 95: Obecné schéma ANN
	Snímek 96: Topologie ANN
	Snímek 97: Topologie ANN
	Snímek 98: Rekurentní ANN
	Snímek 99: Rekurentní ANN
	Snímek 100: Rekurentní ANN
	Snímek 101: Rekurentní ANN
	Snímek 102
	Snímek 103: Hopfieldova síť
	Snímek 104: Diskrétní Hopfieldova síť
	Snímek 105: Diskrétní Hopfieldova síť
	Snímek 106: Diskrétní Hopfieldova síť
	Snímek 107: Diskrétní Hopfieldova síť
	Snímek 108: Diskrétní Hopfieldova síť
	Snímek 109: Učení Hopfieldovy sítě
	Snímek 110: Vybavování Hopfieldovy sítě
	Snímek 111
	Snímek 112
	Snímek 113
	Snímek 114
	Snímek 115: Diskrétní Hopfieldova síť
	Snímek 116: Hopfieldova síť
	Snímek 117: Hopfieldova síť
	Snímek 118: Hopfieldova síť
	Snímek 119: Hopfieldova síť
	Snímek 120: Hopfieldova síť
	Snímek 121: Řešení příkladů
	Snímek 122: Odezva perceptronu
	Snímek 123: Odezva perceptronu
	Snímek 124: Odezva perceptronu
	Snímek 125: Odezva perceptronu
	Snímek 126: Hebbův zákon učení
	Snímek 127: Trénování perceptronu
	Snímek 128: Trénování perceptronu
	Snímek 129: Trénování perceptronu
	Snímek 130: Trénování perceptronu
	Snímek 131: Algoritmus chybového učení perceptronu
	Snímek 132: Trénování perceptronu
	Snímek 133: Trénování perceptronu
	Snímek 134: Trénování perceptronu
	Snímek 135: Samoorganizační mapy
	Snímek 136: Samoorganizační mapy
	Snímek 137: Willshaw
	Snímek 138: Willshaw
	Snímek 139: Kohonenova samoorganizační mapa
	Snímek 140: Kohonenova samoorganizační mapa
	Snímek 141: Topologie Kohonenovy mapy
	Snímek 142: Topologie Kohonenovy mapy
	Snímek 143: Životní cyklus Kohonenovy mapy
	Snímek 144: Životní cyklus Kohonenovy mapy
	Snímek 145: Učení Kohonenovy mapy
	Snímek 146: Mřížky a okolí neuronu
	Snímek 147: Učení Kohonenovy mapy
	Snímek 148: Učení Kohonenovy mapy
	Snímek 149: Učení Kohonenovy mapy
	Snímek 150: Vybavování Kohonenovy mapy
	Snímek 151: Příklad
	Snímek 152: Příklad
	Snímek 153: Příklad
	Snímek 154: Příklad
	Snímek 155: Příklad
	Snímek 156: Příklad
	Snímek 157: Příklad
	Snímek 158: Příklad
	Snímek 159: Příklad
	Snímek 160: Řešení příkladů
	Snímek 161: Cvičení
	Snímek 162: Učení Hopfieldovy sítě
	Snímek 163: Vybavování Hopfieldovy sítě
	Snímek 164
	Snímek 165
	Snímek 166
	Snímek 167
	Snímek 168: Učení Kohonenovy mapy
	Snímek 169: Vybavování Kohonenovy mapy
	Snímek 170: Dopředná vícevrstvá umělá neuronová síť (ANN/FFNN)
	Snímek 171: Dopředná vícevrstvá umělá neuronová síť
	Snímek 172: Dopředná vícevrstvá umělá neuronová síť
	Snímek 173: Dopředná vícevrstvá umělá neuronová síť
	Snímek 174: Topologie FFNN
	Snímek 175: Stavební blok FFNN
	Snímek 176: Proces učení FFNN
	Snímek 177: Proces učení FFNN
	Snímek 178: Optimalizace FFNN
	Snímek 179: Učení umělé neuronové sítě
	Snímek 180: Algoritmus zpětného šíření chyby (BGD)
	Snímek 181: Algoritmus zpětného šíření chyby (BGD)
	Snímek 182: Algoritmus zpětného šíření chyby
	Snímek 183: Algoritmus zpětného šíření chyby
	Snímek 184: Algoritmus zpětného šíření chyby
	Snímek 185: Algoritmus zpětného šíření chyby
	Snímek 186: Vhodné aktivační funkce
	Snímek 187: Celkový postup algoritmu učení
	Snímek 188: Podmínka ukončení
	Snímek 189: Varianty učení ANN
	Snímek 190: Heuristiky vylepšující BGD
	Snímek 191: Heuristiky vylepšující BGD
	Snímek 192: Optimalizace FFNN
	Snímek 193: Optimalizace topologie FFNN
	Snímek 194: Optimalizace topologie FFNN
	Snímek 195: Příklad
	Snímek 196: Příklad
	Snímek 197: Příklad
	Snímek 198: Příklad
	Snímek 199: Příklad
	Snímek 200: Příklad
	Snímek 201: Metody učení neuronových sítí
	Snímek 202: Učení umělé neuronové sítě
	Snímek 203: Algoritmus zpětného šíření chyby (BGD)
	Snímek 204: Algoritmus zpětného šíření chyby (BGD)
	Snímek 205: Algoritmus zpětného šíření chyby
	Snímek 206: Algoritmus zpětného šíření chyby
	Snímek 207: Algoritmus zpětného šíření chyby
	Snímek 208: Algoritmus zpětného šíření chyby
	Snímek 209: Vhodné aktivační funkce
	Snímek 210: Celkový postup algoritmu učení
	Snímek 211: Učení umělé neuronové sítě
	Snímek 212: Učení umělé neuronové sítě
	Snímek 213: Učení umělé neuronové sítě
	Snímek 214: Učení umělé neuronové sítě
	Snímek 215: Učení umělé neuronové sítě
	Snímek 216: Učení umělé neuronové sítě
	Snímek 217: Podmínka ukončení trénování - přetrénování
	Snímek 218: Varianty učení ANN
	Snímek 219
	Snímek 220: Výpočet odezvy FFNN
	Snímek 221: Výpočet odezvy FFNN
	Snímek 222: Výpočet odezvy FFNN
	Snímek 223: Výpočet odezvy FFNN
	Snímek 224: Výpočet BGD pro FFNN
	Snímek 225: Výpočet BGD pro FFNN
	Snímek 226: Výpočet BGD pro FFNN
	Snímek 227: Výpočet BGD pro FFNN
	Snímek 228: Výpočet BGD pro FFNN
	Snímek 229: Výpočet BGD pro FFNN
	Snímek 230: Metody stanovení topologie FFNN
	Snímek 231: Optimalizace FFNN
	Snímek 232: Optimalizace topologie FFNN
	Snímek 233: Optimalizace topologie FFNN
	Snímek 234: Řešení problémů pomocí FFNN
	Snímek 235: Dopředná vícevrstvá umělá neuronová síť
	Snímek 236: Dopředná vícevrstvá umělá neuronová síť
	Snímek 237: Experimenty s neuronovými sítěmi
	Snímek 238: Dopředná vícevrstvá umělá neuronová síť
	Snímek 239: Dopředná vícevrstvá umělá neuronová síť
	Snímek 240: Dopředná vícevrstvá umělá neuronová síť
	Snímek 241: Dopředná vícevrstvá umělá neuronová síť
	Snímek 242: Binární klasifikace
	Snímek 243: Binární klasifikace
	Snímek 244: Binární klasifikace
	Snímek 245: Klasifikace a rozpoznávání vzorů
	Snímek 246: Klasifikace a rozpoznávání vzorů
	Snímek 247: Klasifikace a rozpoznávání vzorů
	Snímek 248: Klasifikace a rozpoznávání vzorů
	Snímek 249: Klasifikace a rozpoznávání vzorů
	Snímek 250: Klasifikace a rozpoznávání vzorů
	Snímek 251: Klasifikace a rozpoznávání vzorů
	Snímek 252: Klasifikace a rozpoznávání vzorů
	Snímek 253: Klasifikace a rozpoznávání vzorů
	Snímek 254: Klasifikace a rozpoznávání vzorů
	Snímek 255: Klasifikace a rozpoznávání vzorů
	Snímek 256: Klasifikace a rozpoznávání vzorů
	Snímek 257: Klasifikace a rozpoznávání vzorů
	Snímek 258: Klasifikace a rozpoznávání vzorů
	Snímek 259: Klasifikace a rozpoznávání vzorů
	Snímek 260: Extrakce vlastností pomocí HOGs
	Snímek 261: Extrakce vlastností pomocí HOGs
	Snímek 262: Extrakce vlastností pomocí HOGs
	Snímek 263: Extrakce vlastností pomocí HOGs
	Snímek 264: Extrakce vlastností pomocí HOGs
	Snímek 265: Metriky pro hodnocení neuronových sítí
	Snímek 266: Metriky pro hodnocení neuronových sítí
	Snímek 267: Metriky pro hodnocení neuronových sítí
	Snímek 268: Metriky pro hodnocení neuronových sítí
	Snímek 269: Metriky pro hodnocení neuronových sítí
	Snímek 270: Metriky pro hodnocení neuronových sítí
	Snímek 271: Metriky pro hodnocení neuronových sítí
	Snímek 272
	Snímek 273
	Snímek 274
	Snímek 275
	Snímek 276
	Snímek 277
	Snímek 278
	Snímek 279
	Snímek 280
	Snímek 281
	Snímek 282
	Snímek 283
	Snímek 284
	Snímek 285
	Snímek 286
	Snímek 287
	Snímek 288
	Snímek 289
	Snímek 290: Konvoluční neuronová síť (CNN)
	Snímek 291: Problémy zpracování obrazu
	Snímek 292: Problémy zpracování obrazu
	Snímek 293: Konvoluční neuronová síť – myšlenka
	Snímek 294: Konvoluční neuronová síť – myšlenka
	Snímek 295: Konvoluční neuronová síť - úvod
	Snímek 296: Konvoluční neuronová síť – konvoluce
	Snímek 297: Konvoluční neuronová síť – konvoluce
	Snímek 298: Konvoluční neuronová síť – konvoluce
	Snímek 299: Konvoluční neuronová síť – konvoluce
	Snímek 300: Konvoluční neuronová síť – konvoluce
	Snímek 301: Konvoluční neuronová síť – konvoluce
	Snímek 302: Konvoluční neuronová síť – konvoluce
	Snímek 303: Konvoluční neuronová síť – konvoluce
	Snímek 304: Konvoluční neuronová síť – konvoluce
	Snímek 305: Konvoluční neuronová síť – konvoluce
	Snímek 306: Konvoluční neuronová síť – konvoluce
	Snímek 307: Konvoluční neuronová síť – motivace
	Snímek 308: Konvoluční neuronová síť – motivace
	Snímek 309
	Snímek 310: Konvoluční neuronová síť – struktura
	Snímek 311: Konvoluční neuronová síť – struktura
	Snímek 312: Konvoluční neuronová síť – topologie
	Snímek 313: Konvoluční neuronová síť – topologie
	Snímek 314: Konvoluční neuronová síť – vyhodnocení
	Snímek 315: Konvoluční neuronová síť – historie
	Snímek 316: Konvoluční neuronová síť – historie
	Snímek 317: Konvoluční neuronová síť – historie
	Snímek 318: Konvoluční neuronová síť – historie
	Snímek 319: Konvoluční neuronová síť – historie
	Snímek 320: Konvoluční neuronová síť – historie
	Snímek 321: Konvoluční neuronová síť – historie
	Snímek 322: Konvoluční neuronová síť – historie
	Snímek 323: Konvoluční neuronová síť – porovnání
	Snímek 324
	Snímek 325: Konvoluční neuronová síť – detekce
	Snímek 326: Konvoluční neuronová síť – vyhodnocení
	Snímek 327: Konvoluční neuronová síť – R-CNN
	Snímek 328: Konvoluční neuronová síť – Fast R-CNN
	Snímek 329: Konvoluční neuronová síť – YOLO
	Snímek 330: Konvoluční neuronová síť – YOLO
	Snímek 331: Konvoluční neuronová síť – YOLO
	Snímek 332: Konvoluční neuronová síť – porovnání
	Snímek 333
	Snímek 334: Segmentace obrazových dat
	Snímek 335: Segmentace obrazových dat – užití
	Snímek 336: Segmentace pomocí CNN
	Snímek 337: Segmentace pomocí CNN
	Snímek 338: Segmentace pomocí CNN
	Snímek 339: Segmentace pomocí CNN
	Snímek 340: Segmentace pomocí CNN
	Snímek 341: Segmentace pomocí CNN
	Snímek 342: Segmentace pomocí CNN
	Snímek 343: Segmentace pomocí CNN – architektury
	Snímek 344: Segmentace pomocí CNN – architektury
	Snímek 345: Segmentace pomocí CNN – architektury
	Snímek 346: Segmentace pomocí CNN – architektury
	Snímek 347: Segmentace pomocí CNN – architektury
	Snímek 348: Segmentace pomocí CNN – architektury
	Snímek 349: Datasety
	Snímek 350: Augmentace
	Snímek 351
	Snímek 352: Úkol – klasifikace výrobků
	Snímek 353: Úkol – klasifikace výrobků
	Snímek 354: Úkol – klasifikace výrobků
	Snímek 355: Úkol – klasifikace výrobků
	Snímek 356: Úkol – klasifikace výrobků
	Snímek 357: Úkol – klasifikace výrobků
	Snímek 358: Úkol – klasifikace výrobků

